This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For a vertex incident to an edge there is exactly one other vertex incident to the edge. (Contributed by Alexander van der Vekens, 4-Jan-2018) (Revised by AV, 18-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | usgredg3.v | |- V = ( Vtx ` G ) |
|
| usgredg3.e | |- E = ( iEdg ` G ) |
||
| Assertion | usgredgreu | |- ( ( G e. USGraph /\ X e. dom E /\ Y e. ( E ` X ) ) -> E! y e. V ( E ` X ) = { Y , y } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgredg3.v | |- V = ( Vtx ` G ) |
|
| 2 | usgredg3.e | |- E = ( iEdg ` G ) |
|
| 3 | 1 2 | usgredg4 | |- ( ( G e. USGraph /\ X e. dom E /\ Y e. ( E ` X ) ) -> E. y e. V ( E ` X ) = { Y , y } ) |
| 4 | eqtr2 | |- ( ( ( E ` X ) = { Y , y } /\ ( E ` X ) = { Y , x } ) -> { Y , y } = { Y , x } ) |
|
| 5 | vex | |- y e. _V |
|
| 6 | vex | |- x e. _V |
|
| 7 | 5 6 | preqr2 | |- ( { Y , y } = { Y , x } -> y = x ) |
| 8 | 4 7 | syl | |- ( ( ( E ` X ) = { Y , y } /\ ( E ` X ) = { Y , x } ) -> y = x ) |
| 9 | 8 | a1i | |- ( ( ( G e. USGraph /\ X e. dom E /\ Y e. ( E ` X ) ) /\ ( y e. V /\ x e. V ) ) -> ( ( ( E ` X ) = { Y , y } /\ ( E ` X ) = { Y , x } ) -> y = x ) ) |
| 10 | 9 | ralrimivva | |- ( ( G e. USGraph /\ X e. dom E /\ Y e. ( E ` X ) ) -> A. y e. V A. x e. V ( ( ( E ` X ) = { Y , y } /\ ( E ` X ) = { Y , x } ) -> y = x ) ) |
| 11 | preq2 | |- ( y = x -> { Y , y } = { Y , x } ) |
|
| 12 | 11 | eqeq2d | |- ( y = x -> ( ( E ` X ) = { Y , y } <-> ( E ` X ) = { Y , x } ) ) |
| 13 | 12 | reu4 | |- ( E! y e. V ( E ` X ) = { Y , y } <-> ( E. y e. V ( E ` X ) = { Y , y } /\ A. y e. V A. x e. V ( ( ( E ` X ) = { Y , y } /\ ( E ` X ) = { Y , x } ) -> y = x ) ) ) |
| 14 | 3 10 13 | sylanbrc | |- ( ( G e. USGraph /\ X e. dom E /\ Y e. ( E ` X ) ) -> E! y e. V ( E ` X ) = { Y , y } ) |