This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for uptr . (Contributed by Zhi Wang, 16-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uptrlem1.h | |- H = ( Hom ` C ) |
|
| uptrlem1.i | |- I = ( Hom ` D ) |
||
| uptrlem1.j | |- J = ( Hom ` E ) |
||
| uptrlem1.d | |- .xb = ( comp ` D ) |
||
| uptrlem1.e | |- .o. = ( comp ` E ) |
||
| uptrlem2.a | |- A = ( Base ` C ) |
||
| uptrlem2.b | |- B = ( Base ` D ) |
||
| uptrlem2.x | |- ( ph -> X e. B ) |
||
| uptrlem2.y | |- ( ph -> ( ( 1st ` K ) ` X ) = Y ) |
||
| uptrlem2.z | |- ( ph -> Z e. A ) |
||
| uptrlem2.w | |- ( ph -> W e. A ) |
||
| uptrlem2.m | |- ( ph -> M e. ( X I ( ( 1st ` F ) ` Z ) ) ) |
||
| uptrlem2.n | |- ( ph -> ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` Z ) ) ` M ) = N ) |
||
| uptrlem2.f | |- ( ph -> F e. ( C Func D ) ) |
||
| uptrlem2.k | |- ( ph -> K e. ( ( D Full E ) i^i ( D Faith E ) ) ) |
||
| uptrlem2.g | |- ( ph -> ( K o.func F ) = G ) |
||
| Assertion | uptrlem2 | |- ( ph -> ( A. h e. ( Y J ( ( 1st ` G ) ` W ) ) E! k e. ( Z H W ) h = ( ( ( Z ( 2nd ` G ) W ) ` k ) ( <. Y , ( ( 1st ` G ) ` Z ) >. .o. ( ( 1st ` G ) ` W ) ) N ) <-> A. g e. ( X I ( ( 1st ` F ) ` W ) ) E! k e. ( Z H W ) g = ( ( ( Z ( 2nd ` F ) W ) ` k ) ( <. X , ( ( 1st ` F ) ` Z ) >. .xb ( ( 1st ` F ) ` W ) ) M ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uptrlem1.h | |- H = ( Hom ` C ) |
|
| 2 | uptrlem1.i | |- I = ( Hom ` D ) |
|
| 3 | uptrlem1.j | |- J = ( Hom ` E ) |
|
| 4 | uptrlem1.d | |- .xb = ( comp ` D ) |
|
| 5 | uptrlem1.e | |- .o. = ( comp ` E ) |
|
| 6 | uptrlem2.a | |- A = ( Base ` C ) |
|
| 7 | uptrlem2.b | |- B = ( Base ` D ) |
|
| 8 | uptrlem2.x | |- ( ph -> X e. B ) |
|
| 9 | uptrlem2.y | |- ( ph -> ( ( 1st ` K ) ` X ) = Y ) |
|
| 10 | uptrlem2.z | |- ( ph -> Z e. A ) |
|
| 11 | uptrlem2.w | |- ( ph -> W e. A ) |
|
| 12 | uptrlem2.m | |- ( ph -> M e. ( X I ( ( 1st ` F ) ` Z ) ) ) |
|
| 13 | uptrlem2.n | |- ( ph -> ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` Z ) ) ` M ) = N ) |
|
| 14 | uptrlem2.f | |- ( ph -> F e. ( C Func D ) ) |
|
| 15 | uptrlem2.k | |- ( ph -> K e. ( ( D Full E ) i^i ( D Faith E ) ) ) |
|
| 16 | uptrlem2.g | |- ( ph -> ( K o.func F ) = G ) |
|
| 17 | 8 7 | eleqtrdi | |- ( ph -> X e. ( Base ` D ) ) |
| 18 | 10 6 | eleqtrdi | |- ( ph -> Z e. ( Base ` C ) ) |
| 19 | 11 6 | eleqtrdi | |- ( ph -> W e. ( Base ` C ) ) |
| 20 | 14 | func1st2nd | |- ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 21 | relfull | |- Rel ( D Full E ) |
|
| 22 | relin1 | |- ( Rel ( D Full E ) -> Rel ( ( D Full E ) i^i ( D Faith E ) ) ) |
|
| 23 | 21 22 | ax-mp | |- Rel ( ( D Full E ) i^i ( D Faith E ) ) |
| 24 | 1st2nd | |- ( ( Rel ( ( D Full E ) i^i ( D Faith E ) ) /\ K e. ( ( D Full E ) i^i ( D Faith E ) ) ) -> K = <. ( 1st ` K ) , ( 2nd ` K ) >. ) |
|
| 25 | 23 15 24 | sylancr | |- ( ph -> K = <. ( 1st ` K ) , ( 2nd ` K ) >. ) |
| 26 | 25 15 | eqeltrrd | |- ( ph -> <. ( 1st ` K ) , ( 2nd ` K ) >. e. ( ( D Full E ) i^i ( D Faith E ) ) ) |
| 27 | df-br | |- ( ( 1st ` K ) ( ( D Full E ) i^i ( D Faith E ) ) ( 2nd ` K ) <-> <. ( 1st ` K ) , ( 2nd ` K ) >. e. ( ( D Full E ) i^i ( D Faith E ) ) ) |
|
| 28 | 26 27 | sylibr | |- ( ph -> ( 1st ` K ) ( ( D Full E ) i^i ( D Faith E ) ) ( 2nd ` K ) ) |
| 29 | inss1 | |- ( ( D Full E ) i^i ( D Faith E ) ) C_ ( D Full E ) |
|
| 30 | fullfunc | |- ( D Full E ) C_ ( D Func E ) |
|
| 31 | 29 30 | sstri | |- ( ( D Full E ) i^i ( D Faith E ) ) C_ ( D Func E ) |
| 32 | 31 15 | sselid | |- ( ph -> K e. ( D Func E ) ) |
| 33 | 14 32 | cofu1st2nd | |- ( ph -> ( K o.func F ) = ( <. ( 1st ` K ) , ( 2nd ` K ) >. o.func <. ( 1st ` F ) , ( 2nd ` F ) >. ) ) |
| 34 | relfunc | |- Rel ( C Func E ) |
|
| 35 | 14 32 | cofucl | |- ( ph -> ( K o.func F ) e. ( C Func E ) ) |
| 36 | 16 35 | eqeltrrd | |- ( ph -> G e. ( C Func E ) ) |
| 37 | 1st2nd | |- ( ( Rel ( C Func E ) /\ G e. ( C Func E ) ) -> G = <. ( 1st ` G ) , ( 2nd ` G ) >. ) |
|
| 38 | 34 36 37 | sylancr | |- ( ph -> G = <. ( 1st ` G ) , ( 2nd ` G ) >. ) |
| 39 | 16 33 38 | 3eqtr3d | |- ( ph -> ( <. ( 1st ` K ) , ( 2nd ` K ) >. o.func <. ( 1st ` F ) , ( 2nd ` F ) >. ) = <. ( 1st ` G ) , ( 2nd ` G ) >. ) |
| 40 | 1 2 3 4 5 17 9 18 19 12 13 20 28 39 | uptrlem1 | |- ( ph -> ( A. h e. ( Y J ( ( 1st ` G ) ` W ) ) E! k e. ( Z H W ) h = ( ( ( Z ( 2nd ` G ) W ) ` k ) ( <. Y , ( ( 1st ` G ) ` Z ) >. .o. ( ( 1st ` G ) ` W ) ) N ) <-> A. g e. ( X I ( ( 1st ` F ) ` W ) ) E! k e. ( Z H W ) g = ( ( ( Z ( 2nd ` F ) W ) ` k ) ( <. X , ( ( 1st ` F ) ` Z ) >. .xb ( ( 1st ` F ) ` W ) ) M ) ) ) |