This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A unit is nonzero in any nonzero ring. (Contributed by Mario Carneiro, 6-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nzrunit.1 | |- U = ( Unit ` R ) |
|
| nzrunit.2 | |- .0. = ( 0g ` R ) |
||
| Assertion | nzrunit | |- ( ( R e. NzRing /\ A e. U ) -> A =/= .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nzrunit.1 | |- U = ( Unit ` R ) |
|
| 2 | nzrunit.2 | |- .0. = ( 0g ` R ) |
|
| 3 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 4 | 3 2 | nzrnz | |- ( R e. NzRing -> ( 1r ` R ) =/= .0. ) |
| 5 | nzrring | |- ( R e. NzRing -> R e. Ring ) |
|
| 6 | 1 2 3 | 0unit | |- ( R e. Ring -> ( .0. e. U <-> ( 1r ` R ) = .0. ) ) |
| 7 | 6 | necon3bbid | |- ( R e. Ring -> ( -. .0. e. U <-> ( 1r ` R ) =/= .0. ) ) |
| 8 | 5 7 | syl | |- ( R e. NzRing -> ( -. .0. e. U <-> ( 1r ` R ) =/= .0. ) ) |
| 9 | 4 8 | mpbird | |- ( R e. NzRing -> -. .0. e. U ) |
| 10 | eleq1 | |- ( A = .0. -> ( A e. U <-> .0. e. U ) ) |
|
| 11 | 10 | notbid | |- ( A = .0. -> ( -. A e. U <-> -. .0. e. U ) ) |
| 12 | 9 11 | syl5ibrcom | |- ( R e. NzRing -> ( A = .0. -> -. A e. U ) ) |
| 13 | 12 | necon2ad | |- ( R e. NzRing -> ( A e. U -> A =/= .0. ) ) |
| 14 | 13 | imp | |- ( ( R e. NzRing /\ A e. U ) -> A =/= .0. ) |