This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Infer equality from equalities of union and intersection. Exercise 20 of Enderton p. 32 and its converse. (Contributed by NM, 10-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unineq | |- ( ( ( A u. C ) = ( B u. C ) /\ ( A i^i C ) = ( B i^i C ) ) <-> A = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 | |- ( ( A i^i C ) = ( B i^i C ) -> ( x e. ( A i^i C ) <-> x e. ( B i^i C ) ) ) |
|
| 2 | elin | |- ( x e. ( A i^i C ) <-> ( x e. A /\ x e. C ) ) |
|
| 3 | elin | |- ( x e. ( B i^i C ) <-> ( x e. B /\ x e. C ) ) |
|
| 4 | 1 2 3 | 3bitr3g | |- ( ( A i^i C ) = ( B i^i C ) -> ( ( x e. A /\ x e. C ) <-> ( x e. B /\ x e. C ) ) ) |
| 5 | iba | |- ( x e. C -> ( x e. A <-> ( x e. A /\ x e. C ) ) ) |
|
| 6 | iba | |- ( x e. C -> ( x e. B <-> ( x e. B /\ x e. C ) ) ) |
|
| 7 | 5 6 | bibi12d | |- ( x e. C -> ( ( x e. A <-> x e. B ) <-> ( ( x e. A /\ x e. C ) <-> ( x e. B /\ x e. C ) ) ) ) |
| 8 | 4 7 | imbitrrid | |- ( x e. C -> ( ( A i^i C ) = ( B i^i C ) -> ( x e. A <-> x e. B ) ) ) |
| 9 | 8 | adantld | |- ( x e. C -> ( ( ( A u. C ) = ( B u. C ) /\ ( A i^i C ) = ( B i^i C ) ) -> ( x e. A <-> x e. B ) ) ) |
| 10 | uncom | |- ( A u. C ) = ( C u. A ) |
|
| 11 | uncom | |- ( B u. C ) = ( C u. B ) |
|
| 12 | 10 11 | eqeq12i | |- ( ( A u. C ) = ( B u. C ) <-> ( C u. A ) = ( C u. B ) ) |
| 13 | eleq2 | |- ( ( C u. A ) = ( C u. B ) -> ( x e. ( C u. A ) <-> x e. ( C u. B ) ) ) |
|
| 14 | 12 13 | sylbi | |- ( ( A u. C ) = ( B u. C ) -> ( x e. ( C u. A ) <-> x e. ( C u. B ) ) ) |
| 15 | elun | |- ( x e. ( C u. A ) <-> ( x e. C \/ x e. A ) ) |
|
| 16 | elun | |- ( x e. ( C u. B ) <-> ( x e. C \/ x e. B ) ) |
|
| 17 | 14 15 16 | 3bitr3g | |- ( ( A u. C ) = ( B u. C ) -> ( ( x e. C \/ x e. A ) <-> ( x e. C \/ x e. B ) ) ) |
| 18 | biorf | |- ( -. x e. C -> ( x e. A <-> ( x e. C \/ x e. A ) ) ) |
|
| 19 | biorf | |- ( -. x e. C -> ( x e. B <-> ( x e. C \/ x e. B ) ) ) |
|
| 20 | 18 19 | bibi12d | |- ( -. x e. C -> ( ( x e. A <-> x e. B ) <-> ( ( x e. C \/ x e. A ) <-> ( x e. C \/ x e. B ) ) ) ) |
| 21 | 17 20 | imbitrrid | |- ( -. x e. C -> ( ( A u. C ) = ( B u. C ) -> ( x e. A <-> x e. B ) ) ) |
| 22 | 21 | adantrd | |- ( -. x e. C -> ( ( ( A u. C ) = ( B u. C ) /\ ( A i^i C ) = ( B i^i C ) ) -> ( x e. A <-> x e. B ) ) ) |
| 23 | 9 22 | pm2.61i | |- ( ( ( A u. C ) = ( B u. C ) /\ ( A i^i C ) = ( B i^i C ) ) -> ( x e. A <-> x e. B ) ) |
| 24 | 23 | eqrdv | |- ( ( ( A u. C ) = ( B u. C ) /\ ( A i^i C ) = ( B i^i C ) ) -> A = B ) |
| 25 | uneq1 | |- ( A = B -> ( A u. C ) = ( B u. C ) ) |
|
| 26 | ineq1 | |- ( A = B -> ( A i^i C ) = ( B i^i C ) ) |
|
| 27 | 25 26 | jca | |- ( A = B -> ( ( A u. C ) = ( B u. C ) /\ ( A i^i C ) = ( B i^i C ) ) ) |
| 28 | 24 27 | impbii | |- ( ( ( A u. C ) = ( B u. C ) /\ ( A i^i C ) = ( B i^i C ) ) <-> A = B ) |