This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Infer equality from equalities of union and intersection. Exercise 20 of Enderton p. 32 and its converse. (Contributed by NM, 10-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unineq | ⊢ ( ( ( 𝐴 ∪ 𝐶 ) = ( 𝐵 ∪ 𝐶 ) ∧ ( 𝐴 ∩ 𝐶 ) = ( 𝐵 ∩ 𝐶 ) ) ↔ 𝐴 = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 | ⊢ ( ( 𝐴 ∩ 𝐶 ) = ( 𝐵 ∩ 𝐶 ) → ( 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ↔ 𝑥 ∈ ( 𝐵 ∩ 𝐶 ) ) ) | |
| 2 | elin | ⊢ ( 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶 ) ) | |
| 3 | elin | ⊢ ( 𝑥 ∈ ( 𝐵 ∩ 𝐶 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) | |
| 4 | 1 2 3 | 3bitr3g | ⊢ ( ( 𝐴 ∩ 𝐶 ) = ( 𝐵 ∩ 𝐶 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) ) |
| 5 | iba | ⊢ ( 𝑥 ∈ 𝐶 → ( 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶 ) ) ) | |
| 6 | iba | ⊢ ( 𝑥 ∈ 𝐶 → ( 𝑥 ∈ 𝐵 ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) ) | |
| 7 | 5 6 | bibi12d | ⊢ ( 𝑥 ∈ 𝐶 → ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) ) ) |
| 8 | 4 7 | imbitrrid | ⊢ ( 𝑥 ∈ 𝐶 → ( ( 𝐴 ∩ 𝐶 ) = ( 𝐵 ∩ 𝐶 ) → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) ) |
| 9 | 8 | adantld | ⊢ ( 𝑥 ∈ 𝐶 → ( ( ( 𝐴 ∪ 𝐶 ) = ( 𝐵 ∪ 𝐶 ) ∧ ( 𝐴 ∩ 𝐶 ) = ( 𝐵 ∩ 𝐶 ) ) → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) ) |
| 10 | uncom | ⊢ ( 𝐴 ∪ 𝐶 ) = ( 𝐶 ∪ 𝐴 ) | |
| 11 | uncom | ⊢ ( 𝐵 ∪ 𝐶 ) = ( 𝐶 ∪ 𝐵 ) | |
| 12 | 10 11 | eqeq12i | ⊢ ( ( 𝐴 ∪ 𝐶 ) = ( 𝐵 ∪ 𝐶 ) ↔ ( 𝐶 ∪ 𝐴 ) = ( 𝐶 ∪ 𝐵 ) ) |
| 13 | eleq2 | ⊢ ( ( 𝐶 ∪ 𝐴 ) = ( 𝐶 ∪ 𝐵 ) → ( 𝑥 ∈ ( 𝐶 ∪ 𝐴 ) ↔ 𝑥 ∈ ( 𝐶 ∪ 𝐵 ) ) ) | |
| 14 | 12 13 | sylbi | ⊢ ( ( 𝐴 ∪ 𝐶 ) = ( 𝐵 ∪ 𝐶 ) → ( 𝑥 ∈ ( 𝐶 ∪ 𝐴 ) ↔ 𝑥 ∈ ( 𝐶 ∪ 𝐵 ) ) ) |
| 15 | elun | ⊢ ( 𝑥 ∈ ( 𝐶 ∪ 𝐴 ) ↔ ( 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴 ) ) | |
| 16 | elun | ⊢ ( 𝑥 ∈ ( 𝐶 ∪ 𝐵 ) ↔ ( 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐵 ) ) | |
| 17 | 14 15 16 | 3bitr3g | ⊢ ( ( 𝐴 ∪ 𝐶 ) = ( 𝐵 ∪ 𝐶 ) → ( ( 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴 ) ↔ ( 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐵 ) ) ) |
| 18 | biorf | ⊢ ( ¬ 𝑥 ∈ 𝐶 → ( 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴 ) ) ) | |
| 19 | biorf | ⊢ ( ¬ 𝑥 ∈ 𝐶 → ( 𝑥 ∈ 𝐵 ↔ ( 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐵 ) ) ) | |
| 20 | 18 19 | bibi12d | ⊢ ( ¬ 𝑥 ∈ 𝐶 → ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ↔ ( ( 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴 ) ↔ ( 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐵 ) ) ) ) |
| 21 | 17 20 | imbitrrid | ⊢ ( ¬ 𝑥 ∈ 𝐶 → ( ( 𝐴 ∪ 𝐶 ) = ( 𝐵 ∪ 𝐶 ) → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) ) |
| 22 | 21 | adantrd | ⊢ ( ¬ 𝑥 ∈ 𝐶 → ( ( ( 𝐴 ∪ 𝐶 ) = ( 𝐵 ∪ 𝐶 ) ∧ ( 𝐴 ∩ 𝐶 ) = ( 𝐵 ∩ 𝐶 ) ) → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) ) |
| 23 | 9 22 | pm2.61i | ⊢ ( ( ( 𝐴 ∪ 𝐶 ) = ( 𝐵 ∪ 𝐶 ) ∧ ( 𝐴 ∩ 𝐶 ) = ( 𝐵 ∩ 𝐶 ) ) → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
| 24 | 23 | eqrdv | ⊢ ( ( ( 𝐴 ∪ 𝐶 ) = ( 𝐵 ∪ 𝐶 ) ∧ ( 𝐴 ∩ 𝐶 ) = ( 𝐵 ∩ 𝐶 ) ) → 𝐴 = 𝐵 ) |
| 25 | uneq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ∪ 𝐶 ) = ( 𝐵 ∪ 𝐶 ) ) | |
| 26 | ineq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ∩ 𝐶 ) = ( 𝐵 ∩ 𝐶 ) ) | |
| 27 | 25 26 | jca | ⊢ ( 𝐴 = 𝐵 → ( ( 𝐴 ∪ 𝐶 ) = ( 𝐵 ∪ 𝐶 ) ∧ ( 𝐴 ∩ 𝐶 ) = ( 𝐵 ∩ 𝐶 ) ) ) |
| 28 | 24 27 | impbii | ⊢ ( ( ( 𝐴 ∪ 𝐶 ) = ( 𝐵 ∪ 𝐶 ) ∧ ( 𝐴 ∩ 𝐶 ) = ( 𝐵 ∩ 𝐶 ) ) ↔ 𝐴 = 𝐵 ) |