This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An upper bound for the cardinality of the union of an image. Theorem 10.48 of TakeutiZaring p. 99. This version of uniimadom uses a bound-variable hypothesis in place of a distinct variable condition. (Contributed by NM, 26-Mar-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uniimadomf.1 | |- F/_ x F |
|
| uniimadomf.2 | |- A e. _V |
||
| uniimadomf.3 | |- B e. _V |
||
| Assertion | uniimadomf | |- ( ( Fun F /\ A. x e. A ( F ` x ) ~<_ B ) -> U. ( F " A ) ~<_ ( A X. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniimadomf.1 | |- F/_ x F |
|
| 2 | uniimadomf.2 | |- A e. _V |
|
| 3 | uniimadomf.3 | |- B e. _V |
|
| 4 | nfv | |- F/ z ( F ` x ) ~<_ B |
|
| 5 | nfcv | |- F/_ x z |
|
| 6 | 1 5 | nffv | |- F/_ x ( F ` z ) |
| 7 | nfcv | |- F/_ x ~<_ |
|
| 8 | nfcv | |- F/_ x B |
|
| 9 | 6 7 8 | nfbr | |- F/ x ( F ` z ) ~<_ B |
| 10 | fveq2 | |- ( x = z -> ( F ` x ) = ( F ` z ) ) |
|
| 11 | 10 | breq1d | |- ( x = z -> ( ( F ` x ) ~<_ B <-> ( F ` z ) ~<_ B ) ) |
| 12 | 4 9 11 | cbvralw | |- ( A. x e. A ( F ` x ) ~<_ B <-> A. z e. A ( F ` z ) ~<_ B ) |
| 13 | 2 3 | uniimadom | |- ( ( Fun F /\ A. z e. A ( F ` z ) ~<_ B ) -> U. ( F " A ) ~<_ ( A X. B ) ) |
| 14 | 12 13 | sylan2b | |- ( ( Fun F /\ A. x e. A ( F ` x ) ~<_ B ) -> U. ( F " A ) ~<_ ( A X. B ) ) |