This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a multigraph, each walk has no loops! (Contributed by Alexander van der Vekens, 7-Nov-2017) (Revised by AV, 3-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | umgrwlknloop | |- ( ( G e. UMGraph /\ F ( Walks ` G ) P ) -> A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | umgrupgr | |- ( G e. UMGraph -> G e. UPGraph ) |
|
| 2 | eqid | |- ( Edg ` G ) = ( Edg ` G ) |
|
| 3 | 2 | upgrwlkvtxedg | |- ( ( G e. UPGraph /\ F ( Walks ` G ) P ) -> A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } e. ( Edg ` G ) ) |
| 4 | 1 3 | sylan | |- ( ( G e. UMGraph /\ F ( Walks ` G ) P ) -> A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } e. ( Edg ` G ) ) |
| 5 | 2 | umgredgne | |- ( ( G e. UMGraph /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } e. ( Edg ` G ) ) -> ( P ` k ) =/= ( P ` ( k + 1 ) ) ) |
| 6 | 5 | ex | |- ( G e. UMGraph -> ( { ( P ` k ) , ( P ` ( k + 1 ) ) } e. ( Edg ` G ) -> ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) |
| 7 | 6 | adantr | |- ( ( G e. UMGraph /\ F ( Walks ` G ) P ) -> ( { ( P ` k ) , ( P ` ( k + 1 ) ) } e. ( Edg ` G ) -> ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) |
| 8 | 7 | ralimdv | |- ( ( G e. UMGraph /\ F ( Walks ` G ) P ) -> ( A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } e. ( Edg ` G ) -> A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) |
| 9 | 4 8 | mpd | |- ( ( G e. UMGraph /\ F ( Walks ` G ) P ) -> A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) ) |