This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An undirected multigraph is an undirected pseudograph. (Contributed by AV, 25-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | umgrupgr | |- ( G e. UMGraph -> G e. UPGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 2 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 3 | 1 2 | isumgr | |- ( G e. UMGraph -> ( G e. UMGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } ) ) |
| 4 | id | |- ( ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } -> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } ) |
|
| 5 | 2re | |- 2 e. RR |
|
| 6 | 5 | leidi | |- 2 <_ 2 |
| 7 | 6 | a1i | |- ( ( # ` x ) = 2 -> 2 <_ 2 ) |
| 8 | breq1 | |- ( ( # ` x ) = 2 -> ( ( # ` x ) <_ 2 <-> 2 <_ 2 ) ) |
|
| 9 | 7 8 | mpbird | |- ( ( # ` x ) = 2 -> ( # ` x ) <_ 2 ) |
| 10 | 9 | a1i | |- ( x e. ( ~P ( Vtx ` G ) \ { (/) } ) -> ( ( # ` x ) = 2 -> ( # ` x ) <_ 2 ) ) |
| 11 | 10 | ss2rabi | |- { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } C_ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } |
| 12 | 11 | a1i | |- ( ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } -> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } C_ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
| 13 | 4 12 | fssd | |- ( ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } -> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
| 14 | 3 13 | biimtrdi | |- ( G e. UMGraph -> ( G e. UMGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) ) |
| 15 | 14 | pm2.43i | |- ( G e. UMGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
| 16 | 1 2 | isupgr | |- ( G e. UMGraph -> ( G e. UPGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) ) |
| 17 | 15 16 | mpbird | |- ( G e. UMGraph -> G e. UPGraph ) |