This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The pairs of connected vertices of a walk are edges in a pseudograph. (Contributed by Alexander van der Vekens, 22-Jul-2018) (Revised by AV, 2-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | wlkvtxedg.e | |- E = ( Edg ` G ) |
|
| Assertion | upgrwlkvtxedg | |- ( ( G e. UPGraph /\ F ( Walks ` G ) P ) -> A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkvtxedg.e | |- E = ( Edg ` G ) |
|
| 2 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 3 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 4 | 2 3 | upgriswlk | |- ( G e. UPGraph -> ( F ( Walks ` G ) P <-> ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) |
| 5 | 3 1 | upgredginwlk | |- ( ( G e. UPGraph /\ F e. Word dom ( iEdg ` G ) ) -> ( k e. ( 0 ..^ ( # ` F ) ) -> ( ( iEdg ` G ) ` ( F ` k ) ) e. E ) ) |
| 6 | 5 | ancoms | |- ( ( F e. Word dom ( iEdg ` G ) /\ G e. UPGraph ) -> ( k e. ( 0 ..^ ( # ` F ) ) -> ( ( iEdg ` G ) ` ( F ` k ) ) e. E ) ) |
| 7 | 6 | imp | |- ( ( ( F e. Word dom ( iEdg ` G ) /\ G e. UPGraph ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( iEdg ` G ) ` ( F ` k ) ) e. E ) |
| 8 | eleq1 | |- ( { ( P ` k ) , ( P ` ( k + 1 ) ) } = ( ( iEdg ` G ) ` ( F ` k ) ) -> ( { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E <-> ( ( iEdg ` G ) ` ( F ` k ) ) e. E ) ) |
|
| 9 | 8 | eqcoms | |- ( ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } -> ( { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E <-> ( ( iEdg ` G ) ` ( F ` k ) ) e. E ) ) |
| 10 | 7 9 | syl5ibrcom | |- ( ( ( F e. Word dom ( iEdg ` G ) /\ G e. UPGraph ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } -> { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E ) ) |
| 11 | 10 | ralimdva | |- ( ( F e. Word dom ( iEdg ` G ) /\ G e. UPGraph ) -> ( A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } -> A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E ) ) |
| 12 | 11 | impancom | |- ( ( F e. Word dom ( iEdg ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) -> ( G e. UPGraph -> A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E ) ) |
| 13 | 12 | 3adant2 | |- ( ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) -> ( G e. UPGraph -> A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E ) ) |
| 14 | 13 | com12 | |- ( G e. UPGraph -> ( ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) -> A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E ) ) |
| 15 | 4 14 | sylbid | |- ( G e. UPGraph -> ( F ( Walks ` G ) P -> A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E ) ) |
| 16 | 15 | imp | |- ( ( G e. UPGraph /\ F ( Walks ` G ) P ) -> A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E ) |