This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a multigraph, each walk has no loops! (Contributed by Alexander van der Vekens, 7-Nov-2017) (Revised by AV, 3-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | umgrwlknloop | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | umgrupgr | ⊢ ( 𝐺 ∈ UMGraph → 𝐺 ∈ UPGraph ) | |
| 2 | eqid | ⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) | |
| 3 | 2 | upgrwlkvtxedg | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) |
| 4 | 1 3 | sylan | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) |
| 5 | 2 | umgredgne | ⊢ ( ( 𝐺 ∈ UMGraph ∧ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) |
| 6 | 5 | ex | ⊢ ( 𝐺 ∈ UMGraph → ( { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
| 7 | 6 | adantr | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) → ( { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
| 8 | 7 | ralimdv | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
| 9 | 4 8 | mpd | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) |