This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An edge of a multigraph is not a loop. (Contributed by AV, 9-Jan-2020) (Revised by AV, 8-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | umgredgnlp.e | |- E = ( Edg ` G ) |
|
| Assertion | umgredgnlp | |- ( ( G e. UMGraph /\ C e. E ) -> -. E. v C = { v } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | umgredgnlp.e | |- E = ( Edg ` G ) |
|
| 2 | vex | |- v e. _V |
|
| 3 | hashsng | |- ( v e. _V -> ( # ` { v } ) = 1 ) |
|
| 4 | 1ne2 | |- 1 =/= 2 |
|
| 5 | 4 | neii | |- -. 1 = 2 |
| 6 | eqeq1 | |- ( ( # ` { v } ) = 1 -> ( ( # ` { v } ) = 2 <-> 1 = 2 ) ) |
|
| 7 | 5 6 | mtbiri | |- ( ( # ` { v } ) = 1 -> -. ( # ` { v } ) = 2 ) |
| 8 | 2 3 7 | mp2b | |- -. ( # ` { v } ) = 2 |
| 9 | fveqeq2 | |- ( C = { v } -> ( ( # ` C ) = 2 <-> ( # ` { v } ) = 2 ) ) |
|
| 10 | 8 9 | mtbiri | |- ( C = { v } -> -. ( # ` C ) = 2 ) |
| 11 | 10 | intnand | |- ( C = { v } -> -. ( C e. ~P ( Vtx ` G ) /\ ( # ` C ) = 2 ) ) |
| 12 | 1 | eleq2i | |- ( C e. E <-> C e. ( Edg ` G ) ) |
| 13 | edgumgr | |- ( ( G e. UMGraph /\ C e. ( Edg ` G ) ) -> ( C e. ~P ( Vtx ` G ) /\ ( # ` C ) = 2 ) ) |
|
| 14 | 12 13 | sylan2b | |- ( ( G e. UMGraph /\ C e. E ) -> ( C e. ~P ( Vtx ` G ) /\ ( # ` C ) = 2 ) ) |
| 15 | 11 14 | nsyl3 | |- ( ( G e. UMGraph /\ C e. E ) -> -. C = { v } ) |
| 16 | 15 | nexdv | |- ( ( G e. UMGraph /\ C e. E ) -> -. E. v C = { v } ) |