This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An edge of a multigraph always connects two vertices. Analogue of umgredgprv . This theorem does not hold for arbitrary pseudographs: if either M or N is a proper class, then { M , N } e. E could still hold ( { M , N } would be either { M } or { N } , see prprc1 or prprc2 , i.e. a loop), but M e. V or N e. V would not be true. (Contributed by AV, 27-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgredg.v | |- V = ( Vtx ` G ) |
|
| upgredg.e | |- E = ( Edg ` G ) |
||
| Assertion | umgrpredgv | |- ( ( G e. UMGraph /\ { M , N } e. E ) -> ( M e. V /\ N e. V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgredg.v | |- V = ( Vtx ` G ) |
|
| 2 | upgredg.e | |- E = ( Edg ` G ) |
|
| 3 | 2 | eleq2i | |- ( { M , N } e. E <-> { M , N } e. ( Edg ` G ) ) |
| 4 | edgumgr | |- ( ( G e. UMGraph /\ { M , N } e. ( Edg ` G ) ) -> ( { M , N } e. ~P ( Vtx ` G ) /\ ( # ` { M , N } ) = 2 ) ) |
|
| 5 | 3 4 | sylan2b | |- ( ( G e. UMGraph /\ { M , N } e. E ) -> ( { M , N } e. ~P ( Vtx ` G ) /\ ( # ` { M , N } ) = 2 ) ) |
| 6 | eqid | |- { M , N } = { M , N } |
|
| 7 | 6 | hashprdifel | |- ( ( # ` { M , N } ) = 2 -> ( M e. { M , N } /\ N e. { M , N } /\ M =/= N ) ) |
| 8 | 1 | eqcomi | |- ( Vtx ` G ) = V |
| 9 | 8 | pweqi | |- ~P ( Vtx ` G ) = ~P V |
| 10 | 9 | eleq2i | |- ( { M , N } e. ~P ( Vtx ` G ) <-> { M , N } e. ~P V ) |
| 11 | prelpw | |- ( ( M e. { M , N } /\ N e. { M , N } ) -> ( ( M e. V /\ N e. V ) <-> { M , N } e. ~P V ) ) |
|
| 12 | 11 | biimprd | |- ( ( M e. { M , N } /\ N e. { M , N } ) -> ( { M , N } e. ~P V -> ( M e. V /\ N e. V ) ) ) |
| 13 | 10 12 | biimtrid | |- ( ( M e. { M , N } /\ N e. { M , N } ) -> ( { M , N } e. ~P ( Vtx ` G ) -> ( M e. V /\ N e. V ) ) ) |
| 14 | 13 | 3adant3 | |- ( ( M e. { M , N } /\ N e. { M , N } /\ M =/= N ) -> ( { M , N } e. ~P ( Vtx ` G ) -> ( M e. V /\ N e. V ) ) ) |
| 15 | 7 14 | syl | |- ( ( # ` { M , N } ) = 2 -> ( { M , N } e. ~P ( Vtx ` G ) -> ( M e. V /\ N e. V ) ) ) |
| 16 | 15 | impcom | |- ( ( { M , N } e. ~P ( Vtx ` G ) /\ ( # ` { M , N } ) = 2 ) -> ( M e. V /\ N e. V ) ) |
| 17 | 5 16 | syl | |- ( ( G e. UMGraph /\ { M , N } e. E ) -> ( M e. V /\ N e. V ) ) |