This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Show that an unordered pair is a valid edge in a multigraph. (Contributed by AV, 9-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | umgrbi.x | |- X e. V |
|
| umgrbi.y | |- Y e. V |
||
| umgrbi.n | |- X =/= Y |
||
| Assertion | umgrbi | |- { X , Y } e. { x e. ~P V | ( # ` x ) = 2 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | umgrbi.x | |- X e. V |
|
| 2 | umgrbi.y | |- Y e. V |
|
| 3 | umgrbi.n | |- X =/= Y |
|
| 4 | prssi | |- ( ( X e. V /\ Y e. V ) -> { X , Y } C_ V ) |
|
| 5 | 1 2 4 | mp2an | |- { X , Y } C_ V |
| 6 | prex | |- { X , Y } e. _V |
|
| 7 | 6 | elpw | |- ( { X , Y } e. ~P V <-> { X , Y } C_ V ) |
| 8 | 5 7 | mpbir | |- { X , Y } e. ~P V |
| 9 | hashprg | |- ( ( X e. V /\ Y e. V ) -> ( X =/= Y <-> ( # ` { X , Y } ) = 2 ) ) |
|
| 10 | 3 9 | mpbii | |- ( ( X e. V /\ Y e. V ) -> ( # ` { X , Y } ) = 2 ) |
| 11 | 1 2 10 | mp2an | |- ( # ` { X , Y } ) = 2 |
| 12 | fveqeq2 | |- ( x = { X , Y } -> ( ( # ` x ) = 2 <-> ( # ` { X , Y } ) = 2 ) ) |
|
| 13 | 12 | elrab | |- ( { X , Y } e. { x e. ~P V | ( # ` x ) = 2 } <-> ( { X , Y } e. ~P V /\ ( # ` { X , Y } ) = 2 ) ) |
| 14 | 8 11 13 | mpbir2an | |- { X , Y } e. { x e. ~P V | ( # ` x ) = 2 } |