This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Show that an unordered pair is a valid edge in a multigraph. (Contributed by AV, 9-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | umgrbi.x | ⊢ 𝑋 ∈ 𝑉 | |
| umgrbi.y | ⊢ 𝑌 ∈ 𝑉 | ||
| umgrbi.n | ⊢ 𝑋 ≠ 𝑌 | ||
| Assertion | umgrbi | ⊢ { 𝑋 , 𝑌 } ∈ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | umgrbi.x | ⊢ 𝑋 ∈ 𝑉 | |
| 2 | umgrbi.y | ⊢ 𝑌 ∈ 𝑉 | |
| 3 | umgrbi.n | ⊢ 𝑋 ≠ 𝑌 | |
| 4 | prssi | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → { 𝑋 , 𝑌 } ⊆ 𝑉 ) | |
| 5 | 1 2 4 | mp2an | ⊢ { 𝑋 , 𝑌 } ⊆ 𝑉 |
| 6 | prex | ⊢ { 𝑋 , 𝑌 } ∈ V | |
| 7 | 6 | elpw | ⊢ ( { 𝑋 , 𝑌 } ∈ 𝒫 𝑉 ↔ { 𝑋 , 𝑌 } ⊆ 𝑉 ) |
| 8 | 5 7 | mpbir | ⊢ { 𝑋 , 𝑌 } ∈ 𝒫 𝑉 |
| 9 | hashprg | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 ≠ 𝑌 ↔ ( ♯ ‘ { 𝑋 , 𝑌 } ) = 2 ) ) | |
| 10 | 3 9 | mpbii | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ♯ ‘ { 𝑋 , 𝑌 } ) = 2 ) |
| 11 | 1 2 10 | mp2an | ⊢ ( ♯ ‘ { 𝑋 , 𝑌 } ) = 2 |
| 12 | fveqeq2 | ⊢ ( 𝑥 = { 𝑋 , 𝑌 } → ( ( ♯ ‘ 𝑥 ) = 2 ↔ ( ♯ ‘ { 𝑋 , 𝑌 } ) = 2 ) ) | |
| 13 | 12 | elrab | ⊢ ( { 𝑋 , 𝑌 } ∈ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ ( { 𝑋 , 𝑌 } ∈ 𝒫 𝑉 ∧ ( ♯ ‘ { 𝑋 , 𝑌 } ) = 2 ) ) |
| 14 | 8 11 13 | mpbir2an | ⊢ { 𝑋 , 𝑌 } ∈ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } |