This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The edge function in a multigraph with two edges connecting the same two vertices. (Contributed by AV, 17-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | umgr2v2evtx.g | |- G = <. V , { <. 0 , { A , B } >. , <. 1 , { A , B } >. } >. |
|
| Assertion | umgr2v2eiedg | |- ( ( V e. W /\ A e. V /\ B e. V ) -> ( iEdg ` G ) = { <. 0 , { A , B } >. , <. 1 , { A , B } >. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | umgr2v2evtx.g | |- G = <. V , { <. 0 , { A , B } >. , <. 1 , { A , B } >. } >. |
|
| 2 | 1 | fveq2i | |- ( iEdg ` G ) = ( iEdg ` <. V , { <. 0 , { A , B } >. , <. 1 , { A , B } >. } >. ) |
| 3 | simp1 | |- ( ( V e. W /\ A e. V /\ B e. V ) -> V e. W ) |
|
| 4 | prex | |- { <. 0 , { A , B } >. , <. 1 , { A , B } >. } e. _V |
|
| 5 | opiedgfv | |- ( ( V e. W /\ { <. 0 , { A , B } >. , <. 1 , { A , B } >. } e. _V ) -> ( iEdg ` <. V , { <. 0 , { A , B } >. , <. 1 , { A , B } >. } >. ) = { <. 0 , { A , B } >. , <. 1 , { A , B } >. } ) |
|
| 6 | 3 4 5 | sylancl | |- ( ( V e. W /\ A e. V /\ B e. V ) -> ( iEdg ` <. V , { <. 0 , { A , B } >. , <. 1 , { A , B } >. } >. ) = { <. 0 , { A , B } >. , <. 1 , { A , B } >. } ) |
| 7 | 2 6 | eqtrid | |- ( ( V e. W /\ A e. V /\ B e. V ) -> ( iEdg ` G ) = { <. 0 , { A , B } >. , <. 1 , { A , B } >. } ) |