This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A word of length 1 is a singleton word. (Contributed by AV, 24-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wrdl1exs1 | |- ( ( W e. Word S /\ ( # ` W ) = 1 ) -> E. s e. S W = <" s "> ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1le1 | |- 1 <_ 1 |
|
| 2 | breq2 | |- ( ( # ` W ) = 1 -> ( 1 <_ ( # ` W ) <-> 1 <_ 1 ) ) |
|
| 3 | 1 2 | mpbiri | |- ( ( # ` W ) = 1 -> 1 <_ ( # ` W ) ) |
| 4 | wrdsymb1 | |- ( ( W e. Word S /\ 1 <_ ( # ` W ) ) -> ( W ` 0 ) e. S ) |
|
| 5 | 3 4 | sylan2 | |- ( ( W e. Word S /\ ( # ` W ) = 1 ) -> ( W ` 0 ) e. S ) |
| 6 | s1eq | |- ( s = ( W ` 0 ) -> <" s "> = <" ( W ` 0 ) "> ) |
|
| 7 | 6 | adantl | |- ( ( ( W e. Word S /\ ( # ` W ) = 1 ) /\ s = ( W ` 0 ) ) -> <" s "> = <" ( W ` 0 ) "> ) |
| 8 | 7 | eqeq2d | |- ( ( ( W e. Word S /\ ( # ` W ) = 1 ) /\ s = ( W ` 0 ) ) -> ( W = <" s "> <-> W = <" ( W ` 0 ) "> ) ) |
| 9 | eqs1 | |- ( ( W e. Word S /\ ( # ` W ) = 1 ) -> W = <" ( W ` 0 ) "> ) |
|
| 10 | 5 8 9 | rspcedvd | |- ( ( W e. Word S /\ ( # ` W ) = 1 ) -> E. s e. S W = <" s "> ) |