This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for uhgrwkspth . (Contributed by AV, 25-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uhgrwkspthlem1 | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝐹 ) = 1 ) → Fun ◡ 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 2 | 1 | wlkf | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) |
| 3 | wrdl1exs1 | ⊢ ( ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐹 ) = 1 ) → ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) 𝐹 = 〈“ 𝑖 ”〉 ) | |
| 4 | funcnvs1 | ⊢ Fun ◡ 〈“ 𝑖 ”〉 | |
| 5 | cnveq | ⊢ ( 𝐹 = 〈“ 𝑖 ”〉 → ◡ 𝐹 = ◡ 〈“ 𝑖 ”〉 ) | |
| 6 | 5 | funeqd | ⊢ ( 𝐹 = 〈“ 𝑖 ”〉 → ( Fun ◡ 𝐹 ↔ Fun ◡ 〈“ 𝑖 ”〉 ) ) |
| 7 | 4 6 | mpbiri | ⊢ ( 𝐹 = 〈“ 𝑖 ”〉 → Fun ◡ 𝐹 ) |
| 8 | 7 | rexlimivw | ⊢ ( ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) 𝐹 = 〈“ 𝑖 ”〉 → Fun ◡ 𝐹 ) |
| 9 | 3 8 | syl | ⊢ ( ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐹 ) = 1 ) → Fun ◡ 𝐹 ) |
| 10 | 2 9 | sylan | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝐹 ) = 1 ) → Fun ◡ 𝐹 ) |