This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of a set to be a subgraph of another set. (Contributed by AV, 16-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issubgr.v | |- V = ( Vtx ` S ) |
|
| issubgr.a | |- A = ( Vtx ` G ) |
||
| issubgr.i | |- I = ( iEdg ` S ) |
||
| issubgr.b | |- B = ( iEdg ` G ) |
||
| issubgr.e | |- E = ( Edg ` S ) |
||
| Assertion | issubgr | |- ( ( G e. W /\ S e. U ) -> ( S SubGraph G <-> ( V C_ A /\ I = ( B |` dom I ) /\ E C_ ~P V ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubgr.v | |- V = ( Vtx ` S ) |
|
| 2 | issubgr.a | |- A = ( Vtx ` G ) |
|
| 3 | issubgr.i | |- I = ( iEdg ` S ) |
|
| 4 | issubgr.b | |- B = ( iEdg ` G ) |
|
| 5 | issubgr.e | |- E = ( Edg ` S ) |
|
| 6 | fveq2 | |- ( s = S -> ( Vtx ` s ) = ( Vtx ` S ) ) |
|
| 7 | 6 | adantr | |- ( ( s = S /\ g = G ) -> ( Vtx ` s ) = ( Vtx ` S ) ) |
| 8 | fveq2 | |- ( g = G -> ( Vtx ` g ) = ( Vtx ` G ) ) |
|
| 9 | 8 | adantl | |- ( ( s = S /\ g = G ) -> ( Vtx ` g ) = ( Vtx ` G ) ) |
| 10 | 7 9 | sseq12d | |- ( ( s = S /\ g = G ) -> ( ( Vtx ` s ) C_ ( Vtx ` g ) <-> ( Vtx ` S ) C_ ( Vtx ` G ) ) ) |
| 11 | fveq2 | |- ( s = S -> ( iEdg ` s ) = ( iEdg ` S ) ) |
|
| 12 | 11 | adantr | |- ( ( s = S /\ g = G ) -> ( iEdg ` s ) = ( iEdg ` S ) ) |
| 13 | fveq2 | |- ( g = G -> ( iEdg ` g ) = ( iEdg ` G ) ) |
|
| 14 | 13 | adantl | |- ( ( s = S /\ g = G ) -> ( iEdg ` g ) = ( iEdg ` G ) ) |
| 15 | 11 | dmeqd | |- ( s = S -> dom ( iEdg ` s ) = dom ( iEdg ` S ) ) |
| 16 | 15 | adantr | |- ( ( s = S /\ g = G ) -> dom ( iEdg ` s ) = dom ( iEdg ` S ) ) |
| 17 | 14 16 | reseq12d | |- ( ( s = S /\ g = G ) -> ( ( iEdg ` g ) |` dom ( iEdg ` s ) ) = ( ( iEdg ` G ) |` dom ( iEdg ` S ) ) ) |
| 18 | 12 17 | eqeq12d | |- ( ( s = S /\ g = G ) -> ( ( iEdg ` s ) = ( ( iEdg ` g ) |` dom ( iEdg ` s ) ) <-> ( iEdg ` S ) = ( ( iEdg ` G ) |` dom ( iEdg ` S ) ) ) ) |
| 19 | fveq2 | |- ( s = S -> ( Edg ` s ) = ( Edg ` S ) ) |
|
| 20 | 6 | pweqd | |- ( s = S -> ~P ( Vtx ` s ) = ~P ( Vtx ` S ) ) |
| 21 | 19 20 | sseq12d | |- ( s = S -> ( ( Edg ` s ) C_ ~P ( Vtx ` s ) <-> ( Edg ` S ) C_ ~P ( Vtx ` S ) ) ) |
| 22 | 21 | adantr | |- ( ( s = S /\ g = G ) -> ( ( Edg ` s ) C_ ~P ( Vtx ` s ) <-> ( Edg ` S ) C_ ~P ( Vtx ` S ) ) ) |
| 23 | 10 18 22 | 3anbi123d | |- ( ( s = S /\ g = G ) -> ( ( ( Vtx ` s ) C_ ( Vtx ` g ) /\ ( iEdg ` s ) = ( ( iEdg ` g ) |` dom ( iEdg ` s ) ) /\ ( Edg ` s ) C_ ~P ( Vtx ` s ) ) <-> ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) = ( ( iEdg ` G ) |` dom ( iEdg ` S ) ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) ) ) |
| 24 | df-subgr | |- SubGraph = { <. s , g >. | ( ( Vtx ` s ) C_ ( Vtx ` g ) /\ ( iEdg ` s ) = ( ( iEdg ` g ) |` dom ( iEdg ` s ) ) /\ ( Edg ` s ) C_ ~P ( Vtx ` s ) ) } |
|
| 25 | 23 24 | brabga | |- ( ( S e. U /\ G e. W ) -> ( S SubGraph G <-> ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) = ( ( iEdg ` G ) |` dom ( iEdg ` S ) ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) ) ) |
| 26 | 25 | ancoms | |- ( ( G e. W /\ S e. U ) -> ( S SubGraph G <-> ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) = ( ( iEdg ` G ) |` dom ( iEdg ` S ) ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) ) ) |
| 27 | 1 2 | sseq12i | |- ( V C_ A <-> ( Vtx ` S ) C_ ( Vtx ` G ) ) |
| 28 | 3 | dmeqi | |- dom I = dom ( iEdg ` S ) |
| 29 | 4 28 | reseq12i | |- ( B |` dom I ) = ( ( iEdg ` G ) |` dom ( iEdg ` S ) ) |
| 30 | 3 29 | eqeq12i | |- ( I = ( B |` dom I ) <-> ( iEdg ` S ) = ( ( iEdg ` G ) |` dom ( iEdg ` S ) ) ) |
| 31 | 1 | pweqi | |- ~P V = ~P ( Vtx ` S ) |
| 32 | 5 31 | sseq12i | |- ( E C_ ~P V <-> ( Edg ` S ) C_ ~P ( Vtx ` S ) ) |
| 33 | 27 30 32 | 3anbi123i | |- ( ( V C_ A /\ I = ( B |` dom I ) /\ E C_ ~P V ) <-> ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) = ( ( iEdg ` G ) |` dom ( iEdg ` S ) ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) ) |
| 34 | 26 33 | bitr4di | |- ( ( G e. W /\ S e. U ) -> ( S SubGraph G <-> ( V C_ A /\ I = ( B |` dom I ) /\ E C_ ~P V ) ) ) |