This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ultrafilter containing a finite element is fixed. (Contributed by Jeff Hankins, 5-Dec-2009) (Revised by Stefan O'Rear, 2-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uffinfix | |- ( ( F e. ( UFil ` X ) /\ S e. F /\ S e. Fin ) -> E. x e. X F = { y e. ~P X | x e. y } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ufilfil | |- ( F e. ( UFil ` X ) -> F e. ( Fil ` X ) ) |
|
| 2 | filfinnfr | |- ( ( F e. ( Fil ` X ) /\ S e. F /\ S e. Fin ) -> |^| F =/= (/) ) |
|
| 3 | 1 2 | syl3an1 | |- ( ( F e. ( UFil ` X ) /\ S e. F /\ S e. Fin ) -> |^| F =/= (/) ) |
| 4 | uffix2 | |- ( F e. ( UFil ` X ) -> ( |^| F =/= (/) <-> E. x e. X F = { y e. ~P X | x e. y } ) ) |
|
| 5 | 4 | 3ad2ant1 | |- ( ( F e. ( UFil ` X ) /\ S e. F /\ S e. Fin ) -> ( |^| F =/= (/) <-> E. x e. X F = { y e. ~P X | x e. y } ) ) |
| 6 | 3 5 | mpbid | |- ( ( F e. ( UFil ` X ) /\ S e. F /\ S e. Fin ) -> E. x e. X F = { y e. ~P X | x e. y } ) |