This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a Cartesian product. This version requires no quantifiers or dummy variables. See also elxp4 . (Contributed by NM, 9-Oct-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elxp6 | |- ( A e. ( B X. C ) <-> ( A = <. ( 1st ` A ) , ( 2nd ` A ) >. /\ ( ( 1st ` A ) e. B /\ ( 2nd ` A ) e. C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp4 | |- ( A e. ( B X. C ) <-> ( A = <. U. dom { A } , U. ran { A } >. /\ ( U. dom { A } e. B /\ U. ran { A } e. C ) ) ) |
|
| 2 | 1stval | |- ( 1st ` A ) = U. dom { A } |
|
| 3 | 2ndval | |- ( 2nd ` A ) = U. ran { A } |
|
| 4 | 2 3 | opeq12i | |- <. ( 1st ` A ) , ( 2nd ` A ) >. = <. U. dom { A } , U. ran { A } >. |
| 5 | 4 | eqeq2i | |- ( A = <. ( 1st ` A ) , ( 2nd ` A ) >. <-> A = <. U. dom { A } , U. ran { A } >. ) |
| 6 | 2 | eleq1i | |- ( ( 1st ` A ) e. B <-> U. dom { A } e. B ) |
| 7 | 3 | eleq1i | |- ( ( 2nd ` A ) e. C <-> U. ran { A } e. C ) |
| 8 | 6 7 | anbi12i | |- ( ( ( 1st ` A ) e. B /\ ( 2nd ` A ) e. C ) <-> ( U. dom { A } e. B /\ U. ran { A } e. C ) ) |
| 9 | 5 8 | anbi12i | |- ( ( A = <. ( 1st ` A ) , ( 2nd ` A ) >. /\ ( ( 1st ` A ) e. B /\ ( 2nd ` A ) e. C ) ) <-> ( A = <. U. dom { A } , U. ran { A } >. /\ ( U. dom { A } e. B /\ U. ran { A } e. C ) ) ) |
| 10 | 1 9 | bitr4i | |- ( A e. ( B X. C ) <-> ( A = <. ( 1st ` A ) , ( 2nd ` A ) >. /\ ( ( 1st ` A ) e. B /\ ( 2nd ` A ) e. C ) ) ) |