This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set of limit points of an infinite group sum for the topological group G . If G is Hausdorff, then there will be at most one element in this set and U. ( W tsums F ) selects this unique element if it exists. ( W tsums F ) ~1o is a way to say that the sum exists and is unique. Note that unlike sum_ ( df-sum ) and gsum ( df-gsum ), this does not return the sum itself, but rather the set of all such sums, which is usually either empty or a singleton. (Contributed by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-tsms | |- tsums = ( w e. _V , f e. _V |-> [_ ( ~P dom f i^i Fin ) / s ]_ ( ( ( TopOpen ` w ) fLimf ( s filGen ran ( z e. s |-> { y e. s | z C_ y } ) ) ) ` ( y e. s |-> ( w gsum ( f |` y ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ctsu | |- tsums |
|
| 1 | vw | |- w |
|
| 2 | cvv | |- _V |
|
| 3 | vf | |- f |
|
| 4 | 3 | cv | |- f |
| 5 | 4 | cdm | |- dom f |
| 6 | 5 | cpw | |- ~P dom f |
| 7 | cfn | |- Fin |
|
| 8 | 6 7 | cin | |- ( ~P dom f i^i Fin ) |
| 9 | vs | |- s |
|
| 10 | ctopn | |- TopOpen |
|
| 11 | 1 | cv | |- w |
| 12 | 11 10 | cfv | |- ( TopOpen ` w ) |
| 13 | cflf | |- fLimf |
|
| 14 | 9 | cv | |- s |
| 15 | cfg | |- filGen |
|
| 16 | vz | |- z |
|
| 17 | vy | |- y |
|
| 18 | 16 | cv | |- z |
| 19 | 17 | cv | |- y |
| 20 | 18 19 | wss | |- z C_ y |
| 21 | 20 17 14 | crab | |- { y e. s | z C_ y } |
| 22 | 16 14 21 | cmpt | |- ( z e. s |-> { y e. s | z C_ y } ) |
| 23 | 22 | crn | |- ran ( z e. s |-> { y e. s | z C_ y } ) |
| 24 | 14 23 15 | co | |- ( s filGen ran ( z e. s |-> { y e. s | z C_ y } ) ) |
| 25 | 12 24 13 | co | |- ( ( TopOpen ` w ) fLimf ( s filGen ran ( z e. s |-> { y e. s | z C_ y } ) ) ) |
| 26 | cgsu | |- gsum |
|
| 27 | 4 19 | cres | |- ( f |` y ) |
| 28 | 11 27 26 | co | |- ( w gsum ( f |` y ) ) |
| 29 | 17 14 28 | cmpt | |- ( y e. s |-> ( w gsum ( f |` y ) ) ) |
| 30 | 29 25 | cfv | |- ( ( ( TopOpen ` w ) fLimf ( s filGen ran ( z e. s |-> { y e. s | z C_ y } ) ) ) ` ( y e. s |-> ( w gsum ( f |` y ) ) ) ) |
| 31 | 9 8 30 | csb | |- [_ ( ~P dom f i^i Fin ) / s ]_ ( ( ( TopOpen ` w ) fLimf ( s filGen ran ( z e. s |-> { y e. s | z C_ y } ) ) ) ` ( y e. s |-> ( w gsum ( f |` y ) ) ) ) |
| 32 | 1 3 2 2 31 | cmpo | |- ( w e. _V , f e. _V |-> [_ ( ~P dom f i^i Fin ) / s ]_ ( ( ( TopOpen ` w ) fLimf ( s filGen ran ( z e. s |-> { y e. s | z C_ y } ) ) ) ` ( y e. s |-> ( w gsum ( f |` y ) ) ) ) ) |
| 33 | 0 32 | wceq | |- tsums = ( w e. _V , f e. _V |-> [_ ( ~P dom f i^i Fin ) / s ]_ ( ( ( TopOpen ` w ) fLimf ( s filGen ran ( z e. s |-> { y e. s | z C_ y } ) ) ) ` ( y e. s |-> ( w gsum ( f |` y ) ) ) ) ) |