This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of trails in a pseudograph, definition of walks expanded. (Contributed by Alexander van der Vekens, 20-Oct-2017) (Revised by AV, 7-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgrtrls.v | |- V = ( Vtx ` G ) |
|
| upgrtrls.i | |- I = ( iEdg ` G ) |
||
| Assertion | upgrtrls | |- ( G e. UPGraph -> ( Trails ` G ) = { <. f , p >. | ( ( f e. Word dom I /\ Fun `' f ) /\ p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) ( I ` ( f ` k ) ) = { ( p ` k ) , ( p ` ( k + 1 ) ) } ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrtrls.v | |- V = ( Vtx ` G ) |
|
| 2 | upgrtrls.i | |- I = ( iEdg ` G ) |
|
| 3 | trlsfval | |- ( Trails ` G ) = { <. f , p >. | ( f ( Walks ` G ) p /\ Fun `' f ) } |
|
| 4 | 1 2 | upgriswlk | |- ( G e. UPGraph -> ( f ( Walks ` G ) p <-> ( f e. Word dom I /\ p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) ( I ` ( f ` k ) ) = { ( p ` k ) , ( p ` ( k + 1 ) ) } ) ) ) |
| 5 | 4 | anbi1d | |- ( G e. UPGraph -> ( ( f ( Walks ` G ) p /\ Fun `' f ) <-> ( ( f e. Word dom I /\ p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) ( I ` ( f ` k ) ) = { ( p ` k ) , ( p ` ( k + 1 ) ) } ) /\ Fun `' f ) ) ) |
| 6 | an32 | |- ( ( ( f e. Word dom I /\ ( p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) ( I ` ( f ` k ) ) = { ( p ` k ) , ( p ` ( k + 1 ) ) } ) ) /\ Fun `' f ) <-> ( ( f e. Word dom I /\ Fun `' f ) /\ ( p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) ( I ` ( f ` k ) ) = { ( p ` k ) , ( p ` ( k + 1 ) ) } ) ) ) |
|
| 7 | 3anass | |- ( ( f e. Word dom I /\ p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) ( I ` ( f ` k ) ) = { ( p ` k ) , ( p ` ( k + 1 ) ) } ) <-> ( f e. Word dom I /\ ( p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) ( I ` ( f ` k ) ) = { ( p ` k ) , ( p ` ( k + 1 ) ) } ) ) ) |
|
| 8 | 7 | anbi1i | |- ( ( ( f e. Word dom I /\ p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) ( I ` ( f ` k ) ) = { ( p ` k ) , ( p ` ( k + 1 ) ) } ) /\ Fun `' f ) <-> ( ( f e. Word dom I /\ ( p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) ( I ` ( f ` k ) ) = { ( p ` k ) , ( p ` ( k + 1 ) ) } ) ) /\ Fun `' f ) ) |
| 9 | 3anass | |- ( ( ( f e. Word dom I /\ Fun `' f ) /\ p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) ( I ` ( f ` k ) ) = { ( p ` k ) , ( p ` ( k + 1 ) ) } ) <-> ( ( f e. Word dom I /\ Fun `' f ) /\ ( p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) ( I ` ( f ` k ) ) = { ( p ` k ) , ( p ` ( k + 1 ) ) } ) ) ) |
|
| 10 | 6 8 9 | 3bitr4i | |- ( ( ( f e. Word dom I /\ p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) ( I ` ( f ` k ) ) = { ( p ` k ) , ( p ` ( k + 1 ) ) } ) /\ Fun `' f ) <-> ( ( f e. Word dom I /\ Fun `' f ) /\ p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) ( I ` ( f ` k ) ) = { ( p ` k ) , ( p ` ( k + 1 ) ) } ) ) |
| 11 | 5 10 | bitrdi | |- ( G e. UPGraph -> ( ( f ( Walks ` G ) p /\ Fun `' f ) <-> ( ( f e. Word dom I /\ Fun `' f ) /\ p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) ( I ` ( f ` k ) ) = { ( p ` k ) , ( p ` ( k + 1 ) ) } ) ) ) |
| 12 | 11 | opabbidv | |- ( G e. UPGraph -> { <. f , p >. | ( f ( Walks ` G ) p /\ Fun `' f ) } = { <. f , p >. | ( ( f e. Word dom I /\ Fun `' f ) /\ p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) ( I ` ( f ` k ) ) = { ( p ` k ) , ( p ` ( k + 1 ) ) } ) } ) |
| 13 | 3 12 | eqtrid | |- ( G e. UPGraph -> ( Trails ` G ) = { <. f , p >. | ( ( f e. Word dom I /\ Fun `' f ) /\ p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) ( I ` ( f ` k ) ) = { ( p ` k ) , ( p ` ( k + 1 ) ) } ) } ) |