This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of two open sets is open. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unopn | |- ( ( J e. Top /\ A e. J /\ B e. J ) -> ( A u. B ) e. J ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniprg | |- ( ( A e. J /\ B e. J ) -> U. { A , B } = ( A u. B ) ) |
|
| 2 | 1 | 3adant1 | |- ( ( J e. Top /\ A e. J /\ B e. J ) -> U. { A , B } = ( A u. B ) ) |
| 3 | prssi | |- ( ( A e. J /\ B e. J ) -> { A , B } C_ J ) |
|
| 4 | uniopn | |- ( ( J e. Top /\ { A , B } C_ J ) -> U. { A , B } e. J ) |
|
| 5 | 3 4 | sylan2 | |- ( ( J e. Top /\ ( A e. J /\ B e. J ) ) -> U. { A , B } e. J ) |
| 6 | 5 | 3impb | |- ( ( J e. Top /\ A e. J /\ B e. J ) -> U. { A , B } e. J ) |
| 7 | 2 6 | eqeltrrd | |- ( ( J e. Top /\ A e. J /\ B e. J ) -> ( A u. B ) e. J ) |