This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the product of two metrics. (Contributed by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tmsxps.p | |- P = ( dist ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) |
|
| tmsxps.1 | |- ( ph -> M e. ( *Met ` X ) ) |
||
| tmsxps.2 | |- ( ph -> N e. ( *Met ` Y ) ) |
||
| tmsxpsval.a | |- ( ph -> A e. X ) |
||
| tmsxpsval.b | |- ( ph -> B e. Y ) |
||
| tmsxpsval.c | |- ( ph -> C e. X ) |
||
| tmsxpsval.d | |- ( ph -> D e. Y ) |
||
| Assertion | tmsxpsval | |- ( ph -> ( <. A , B >. P <. C , D >. ) = sup ( { ( A M C ) , ( B N D ) } , RR* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tmsxps.p | |- P = ( dist ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) |
|
| 2 | tmsxps.1 | |- ( ph -> M e. ( *Met ` X ) ) |
|
| 3 | tmsxps.2 | |- ( ph -> N e. ( *Met ` Y ) ) |
|
| 4 | tmsxpsval.a | |- ( ph -> A e. X ) |
|
| 5 | tmsxpsval.b | |- ( ph -> B e. Y ) |
|
| 6 | tmsxpsval.c | |- ( ph -> C e. X ) |
|
| 7 | tmsxpsval.d | |- ( ph -> D e. Y ) |
|
| 8 | eqid | |- ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) = ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) |
|
| 9 | eqid | |- ( Base ` ( toMetSp ` M ) ) = ( Base ` ( toMetSp ` M ) ) |
|
| 10 | eqid | |- ( Base ` ( toMetSp ` N ) ) = ( Base ` ( toMetSp ` N ) ) |
|
| 11 | eqid | |- ( toMetSp ` M ) = ( toMetSp ` M ) |
|
| 12 | 11 | tmsxms | |- ( M e. ( *Met ` X ) -> ( toMetSp ` M ) e. *MetSp ) |
| 13 | 2 12 | syl | |- ( ph -> ( toMetSp ` M ) e. *MetSp ) |
| 14 | eqid | |- ( toMetSp ` N ) = ( toMetSp ` N ) |
|
| 15 | 14 | tmsxms | |- ( N e. ( *Met ` Y ) -> ( toMetSp ` N ) e. *MetSp ) |
| 16 | 3 15 | syl | |- ( ph -> ( toMetSp ` N ) e. *MetSp ) |
| 17 | eqid | |- ( ( dist ` ( toMetSp ` M ) ) |` ( ( Base ` ( toMetSp ` M ) ) X. ( Base ` ( toMetSp ` M ) ) ) ) = ( ( dist ` ( toMetSp ` M ) ) |` ( ( Base ` ( toMetSp ` M ) ) X. ( Base ` ( toMetSp ` M ) ) ) ) |
|
| 18 | eqid | |- ( ( dist ` ( toMetSp ` N ) ) |` ( ( Base ` ( toMetSp ` N ) ) X. ( Base ` ( toMetSp ` N ) ) ) ) = ( ( dist ` ( toMetSp ` N ) ) |` ( ( Base ` ( toMetSp ` N ) ) X. ( Base ` ( toMetSp ` N ) ) ) ) |
|
| 19 | 11 | tmsds | |- ( M e. ( *Met ` X ) -> M = ( dist ` ( toMetSp ` M ) ) ) |
| 20 | 2 19 | syl | |- ( ph -> M = ( dist ` ( toMetSp ` M ) ) ) |
| 21 | 11 | tmsbas | |- ( M e. ( *Met ` X ) -> X = ( Base ` ( toMetSp ` M ) ) ) |
| 22 | 2 21 | syl | |- ( ph -> X = ( Base ` ( toMetSp ` M ) ) ) |
| 23 | 22 | fveq2d | |- ( ph -> ( *Met ` X ) = ( *Met ` ( Base ` ( toMetSp ` M ) ) ) ) |
| 24 | 2 20 23 | 3eltr3d | |- ( ph -> ( dist ` ( toMetSp ` M ) ) e. ( *Met ` ( Base ` ( toMetSp ` M ) ) ) ) |
| 25 | ssid | |- ( Base ` ( toMetSp ` M ) ) C_ ( Base ` ( toMetSp ` M ) ) |
|
| 26 | xmetres2 | |- ( ( ( dist ` ( toMetSp ` M ) ) e. ( *Met ` ( Base ` ( toMetSp ` M ) ) ) /\ ( Base ` ( toMetSp ` M ) ) C_ ( Base ` ( toMetSp ` M ) ) ) -> ( ( dist ` ( toMetSp ` M ) ) |` ( ( Base ` ( toMetSp ` M ) ) X. ( Base ` ( toMetSp ` M ) ) ) ) e. ( *Met ` ( Base ` ( toMetSp ` M ) ) ) ) |
|
| 27 | 24 25 26 | sylancl | |- ( ph -> ( ( dist ` ( toMetSp ` M ) ) |` ( ( Base ` ( toMetSp ` M ) ) X. ( Base ` ( toMetSp ` M ) ) ) ) e. ( *Met ` ( Base ` ( toMetSp ` M ) ) ) ) |
| 28 | 14 | tmsds | |- ( N e. ( *Met ` Y ) -> N = ( dist ` ( toMetSp ` N ) ) ) |
| 29 | 3 28 | syl | |- ( ph -> N = ( dist ` ( toMetSp ` N ) ) ) |
| 30 | 14 | tmsbas | |- ( N e. ( *Met ` Y ) -> Y = ( Base ` ( toMetSp ` N ) ) ) |
| 31 | 3 30 | syl | |- ( ph -> Y = ( Base ` ( toMetSp ` N ) ) ) |
| 32 | 31 | fveq2d | |- ( ph -> ( *Met ` Y ) = ( *Met ` ( Base ` ( toMetSp ` N ) ) ) ) |
| 33 | 3 29 32 | 3eltr3d | |- ( ph -> ( dist ` ( toMetSp ` N ) ) e. ( *Met ` ( Base ` ( toMetSp ` N ) ) ) ) |
| 34 | ssid | |- ( Base ` ( toMetSp ` N ) ) C_ ( Base ` ( toMetSp ` N ) ) |
|
| 35 | xmetres2 | |- ( ( ( dist ` ( toMetSp ` N ) ) e. ( *Met ` ( Base ` ( toMetSp ` N ) ) ) /\ ( Base ` ( toMetSp ` N ) ) C_ ( Base ` ( toMetSp ` N ) ) ) -> ( ( dist ` ( toMetSp ` N ) ) |` ( ( Base ` ( toMetSp ` N ) ) X. ( Base ` ( toMetSp ` N ) ) ) ) e. ( *Met ` ( Base ` ( toMetSp ` N ) ) ) ) |
|
| 36 | 33 34 35 | sylancl | |- ( ph -> ( ( dist ` ( toMetSp ` N ) ) |` ( ( Base ` ( toMetSp ` N ) ) X. ( Base ` ( toMetSp ` N ) ) ) ) e. ( *Met ` ( Base ` ( toMetSp ` N ) ) ) ) |
| 37 | 4 22 | eleqtrd | |- ( ph -> A e. ( Base ` ( toMetSp ` M ) ) ) |
| 38 | 5 31 | eleqtrd | |- ( ph -> B e. ( Base ` ( toMetSp ` N ) ) ) |
| 39 | 6 22 | eleqtrd | |- ( ph -> C e. ( Base ` ( toMetSp ` M ) ) ) |
| 40 | 7 31 | eleqtrd | |- ( ph -> D e. ( Base ` ( toMetSp ` N ) ) ) |
| 41 | 8 9 10 13 16 1 17 18 27 36 37 38 39 40 | xpsdsval | |- ( ph -> ( <. A , B >. P <. C , D >. ) = sup ( { ( A ( ( dist ` ( toMetSp ` M ) ) |` ( ( Base ` ( toMetSp ` M ) ) X. ( Base ` ( toMetSp ` M ) ) ) ) C ) , ( B ( ( dist ` ( toMetSp ` N ) ) |` ( ( Base ` ( toMetSp ` N ) ) X. ( Base ` ( toMetSp ` N ) ) ) ) D ) } , RR* , < ) ) |
| 42 | 37 39 | ovresd | |- ( ph -> ( A ( ( dist ` ( toMetSp ` M ) ) |` ( ( Base ` ( toMetSp ` M ) ) X. ( Base ` ( toMetSp ` M ) ) ) ) C ) = ( A ( dist ` ( toMetSp ` M ) ) C ) ) |
| 43 | 20 | oveqd | |- ( ph -> ( A M C ) = ( A ( dist ` ( toMetSp ` M ) ) C ) ) |
| 44 | 42 43 | eqtr4d | |- ( ph -> ( A ( ( dist ` ( toMetSp ` M ) ) |` ( ( Base ` ( toMetSp ` M ) ) X. ( Base ` ( toMetSp ` M ) ) ) ) C ) = ( A M C ) ) |
| 45 | 38 40 | ovresd | |- ( ph -> ( B ( ( dist ` ( toMetSp ` N ) ) |` ( ( Base ` ( toMetSp ` N ) ) X. ( Base ` ( toMetSp ` N ) ) ) ) D ) = ( B ( dist ` ( toMetSp ` N ) ) D ) ) |
| 46 | 29 | oveqd | |- ( ph -> ( B N D ) = ( B ( dist ` ( toMetSp ` N ) ) D ) ) |
| 47 | 45 46 | eqtr4d | |- ( ph -> ( B ( ( dist ` ( toMetSp ` N ) ) |` ( ( Base ` ( toMetSp ` N ) ) X. ( Base ` ( toMetSp ` N ) ) ) ) D ) = ( B N D ) ) |
| 48 | 44 47 | preq12d | |- ( ph -> { ( A ( ( dist ` ( toMetSp ` M ) ) |` ( ( Base ` ( toMetSp ` M ) ) X. ( Base ` ( toMetSp ` M ) ) ) ) C ) , ( B ( ( dist ` ( toMetSp ` N ) ) |` ( ( Base ` ( toMetSp ` N ) ) X. ( Base ` ( toMetSp ` N ) ) ) ) D ) } = { ( A M C ) , ( B N D ) } ) |
| 49 | 48 | supeq1d | |- ( ph -> sup ( { ( A ( ( dist ` ( toMetSp ` M ) ) |` ( ( Base ` ( toMetSp ` M ) ) X. ( Base ` ( toMetSp ` M ) ) ) ) C ) , ( B ( ( dist ` ( toMetSp ` N ) ) |` ( ( Base ` ( toMetSp ` N ) ) X. ( Base ` ( toMetSp ` N ) ) ) ) D ) } , RR* , < ) = sup ( { ( A M C ) , ( B N D ) } , RR* , < ) ) |
| 50 | 41 49 | eqtrd | |- ( ph -> ( <. A , B >. P <. C , D >. ) = sup ( { ( A M C ) , ( B N D ) } , RR* , < ) ) |