This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the product of two metrics. (Contributed by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tmsxps.p | |- P = ( dist ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) |
|
| tmsxps.1 | |- ( ph -> M e. ( *Met ` X ) ) |
||
| tmsxps.2 | |- ( ph -> N e. ( *Met ` Y ) ) |
||
| tmsxpsval.a | |- ( ph -> A e. X ) |
||
| tmsxpsval.b | |- ( ph -> B e. Y ) |
||
| tmsxpsval.c | |- ( ph -> C e. X ) |
||
| tmsxpsval.d | |- ( ph -> D e. Y ) |
||
| Assertion | tmsxpsval2 | |- ( ph -> ( <. A , B >. P <. C , D >. ) = if ( ( A M C ) <_ ( B N D ) , ( B N D ) , ( A M C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tmsxps.p | |- P = ( dist ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) |
|
| 2 | tmsxps.1 | |- ( ph -> M e. ( *Met ` X ) ) |
|
| 3 | tmsxps.2 | |- ( ph -> N e. ( *Met ` Y ) ) |
|
| 4 | tmsxpsval.a | |- ( ph -> A e. X ) |
|
| 5 | tmsxpsval.b | |- ( ph -> B e. Y ) |
|
| 6 | tmsxpsval.c | |- ( ph -> C e. X ) |
|
| 7 | tmsxpsval.d | |- ( ph -> D e. Y ) |
|
| 8 | 1 2 3 4 5 6 7 | tmsxpsval | |- ( ph -> ( <. A , B >. P <. C , D >. ) = sup ( { ( A M C ) , ( B N D ) } , RR* , < ) ) |
| 9 | xrltso | |- < Or RR* |
|
| 10 | xmetcl | |- ( ( M e. ( *Met ` X ) /\ A e. X /\ C e. X ) -> ( A M C ) e. RR* ) |
|
| 11 | 2 4 6 10 | syl3anc | |- ( ph -> ( A M C ) e. RR* ) |
| 12 | xmetcl | |- ( ( N e. ( *Met ` Y ) /\ B e. Y /\ D e. Y ) -> ( B N D ) e. RR* ) |
|
| 13 | 3 5 7 12 | syl3anc | |- ( ph -> ( B N D ) e. RR* ) |
| 14 | suppr | |- ( ( < Or RR* /\ ( A M C ) e. RR* /\ ( B N D ) e. RR* ) -> sup ( { ( A M C ) , ( B N D ) } , RR* , < ) = if ( ( B N D ) < ( A M C ) , ( A M C ) , ( B N D ) ) ) |
|
| 15 | 9 11 13 14 | mp3an2i | |- ( ph -> sup ( { ( A M C ) , ( B N D ) } , RR* , < ) = if ( ( B N D ) < ( A M C ) , ( A M C ) , ( B N D ) ) ) |
| 16 | xrltnle | |- ( ( ( B N D ) e. RR* /\ ( A M C ) e. RR* ) -> ( ( B N D ) < ( A M C ) <-> -. ( A M C ) <_ ( B N D ) ) ) |
|
| 17 | 13 11 16 | syl2anc | |- ( ph -> ( ( B N D ) < ( A M C ) <-> -. ( A M C ) <_ ( B N D ) ) ) |
| 18 | 17 | ifbid | |- ( ph -> if ( ( B N D ) < ( A M C ) , ( A M C ) , ( B N D ) ) = if ( -. ( A M C ) <_ ( B N D ) , ( A M C ) , ( B N D ) ) ) |
| 19 | ifnot | |- if ( -. ( A M C ) <_ ( B N D ) , ( A M C ) , ( B N D ) ) = if ( ( A M C ) <_ ( B N D ) , ( B N D ) , ( A M C ) ) |
|
| 20 | 18 19 | eqtrdi | |- ( ph -> if ( ( B N D ) < ( A M C ) , ( A M C ) , ( B N D ) ) = if ( ( A M C ) <_ ( B N D ) , ( B N D ) , ( A M C ) ) ) |
| 21 | 8 15 20 | 3eqtrd | |- ( ph -> ( <. A , B >. P <. C , D >. ) = if ( ( A M C ) <_ ( B N D ) , ( B N D ) , ( A M C ) ) ) |