This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a thin category, a hom-set being non-empty is equivalent to having a unique element. (Contributed by Zhi Wang, 21-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | thincmo.c | |- ( ph -> C e. ThinCat ) |
|
| thincmo.x | |- ( ph -> X e. B ) |
||
| thincmo.y | |- ( ph -> Y e. B ) |
||
| thincn0eu.b | |- ( ph -> B = ( Base ` C ) ) |
||
| thincn0eu.h | |- ( ph -> H = ( Hom ` C ) ) |
||
| Assertion | thincn0eu | |- ( ph -> ( ( X H Y ) =/= (/) <-> E! f f e. ( X H Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thincmo.c | |- ( ph -> C e. ThinCat ) |
|
| 2 | thincmo.x | |- ( ph -> X e. B ) |
|
| 3 | thincmo.y | |- ( ph -> Y e. B ) |
|
| 4 | thincn0eu.b | |- ( ph -> B = ( Base ` C ) ) |
|
| 5 | thincn0eu.h | |- ( ph -> H = ( Hom ` C ) ) |
|
| 6 | n0 | |- ( ( X H Y ) =/= (/) <-> E. f f e. ( X H Y ) ) |
|
| 7 | 6 | biimpi | |- ( ( X H Y ) =/= (/) -> E. f f e. ( X H Y ) ) |
| 8 | 1 2 3 4 5 | thincmod | |- ( ph -> E* f f e. ( X H Y ) ) |
| 9 | 7 8 | anim12i | |- ( ( ( X H Y ) =/= (/) /\ ph ) -> ( E. f f e. ( X H Y ) /\ E* f f e. ( X H Y ) ) ) |
| 10 | df-eu | |- ( E! f f e. ( X H Y ) <-> ( E. f f e. ( X H Y ) /\ E* f f e. ( X H Y ) ) ) |
|
| 11 | 9 10 | sylibr | |- ( ( ( X H Y ) =/= (/) /\ ph ) -> E! f f e. ( X H Y ) ) |
| 12 | 11 | expcom | |- ( ph -> ( ( X H Y ) =/= (/) -> E! f f e. ( X H Y ) ) ) |
| 13 | euex | |- ( E! f f e. ( X H Y ) -> E. f f e. ( X H Y ) ) |
|
| 14 | 13 6 | sylibr | |- ( E! f f e. ( X H Y ) -> ( X H Y ) =/= (/) ) |
| 15 | 12 14 | impbid1 | |- ( ph -> ( ( X H Y ) =/= (/) <-> E! f f e. ( X H Y ) ) ) |