This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a thin category, one morphism is a section of another iff they are pointing towards each other. (Contributed by Zhi Wang, 24-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | thincsect.c | |- ( ph -> C e. ThinCat ) |
|
| thincsect.b | |- B = ( Base ` C ) |
||
| thincsect.x | |- ( ph -> X e. B ) |
||
| thincsect.y | |- ( ph -> Y e. B ) |
||
| thincsect.s | |- S = ( Sect ` C ) |
||
| thincsect.h | |- H = ( Hom ` C ) |
||
| Assertion | thincsect | |- ( ph -> ( F ( X S Y ) G <-> ( F e. ( X H Y ) /\ G e. ( Y H X ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thincsect.c | |- ( ph -> C e. ThinCat ) |
|
| 2 | thincsect.b | |- B = ( Base ` C ) |
|
| 3 | thincsect.x | |- ( ph -> X e. B ) |
|
| 4 | thincsect.y | |- ( ph -> Y e. B ) |
|
| 5 | thincsect.s | |- S = ( Sect ` C ) |
|
| 6 | thincsect.h | |- H = ( Hom ` C ) |
|
| 7 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 8 | eqid | |- ( Id ` C ) = ( Id ` C ) |
|
| 9 | 1 | thinccd | |- ( ph -> C e. Cat ) |
| 10 | 2 6 7 8 5 9 3 4 | issect | |- ( ph -> ( F ( X S Y ) G <-> ( F e. ( X H Y ) /\ G e. ( Y H X ) /\ ( G ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) ) ) ) |
| 11 | df-3an | |- ( ( F e. ( X H Y ) /\ G e. ( Y H X ) /\ ( G ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) ) <-> ( ( F e. ( X H Y ) /\ G e. ( Y H X ) ) /\ ( G ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) ) ) |
|
| 12 | 10 11 | bitrdi | |- ( ph -> ( F ( X S Y ) G <-> ( ( F e. ( X H Y ) /\ G e. ( Y H X ) ) /\ ( G ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) ) ) ) |
| 13 | 1 | adantr | |- ( ( ph /\ ( F e. ( X H Y ) /\ G e. ( Y H X ) ) ) -> C e. ThinCat ) |
| 14 | 3 | adantr | |- ( ( ph /\ ( F e. ( X H Y ) /\ G e. ( Y H X ) ) ) -> X e. B ) |
| 15 | 9 | adantr | |- ( ( ph /\ ( F e. ( X H Y ) /\ G e. ( Y H X ) ) ) -> C e. Cat ) |
| 16 | 4 | adantr | |- ( ( ph /\ ( F e. ( X H Y ) /\ G e. ( Y H X ) ) ) -> Y e. B ) |
| 17 | simprl | |- ( ( ph /\ ( F e. ( X H Y ) /\ G e. ( Y H X ) ) ) -> F e. ( X H Y ) ) |
|
| 18 | simprr | |- ( ( ph /\ ( F e. ( X H Y ) /\ G e. ( Y H X ) ) ) -> G e. ( Y H X ) ) |
|
| 19 | 2 6 7 15 14 16 14 17 18 | catcocl | |- ( ( ph /\ ( F e. ( X H Y ) /\ G e. ( Y H X ) ) ) -> ( G ( <. X , Y >. ( comp ` C ) X ) F ) e. ( X H X ) ) |
| 20 | 13 2 6 14 8 19 | thincid | |- ( ( ph /\ ( F e. ( X H Y ) /\ G e. ( Y H X ) ) ) -> ( G ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) ) |
| 21 | 12 20 | mpbiran3d | |- ( ph -> ( F ( X S Y ) G <-> ( F e. ( X H Y ) /\ G e. ( Y H X ) ) ) ) |