This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Categories isomorphic to a thin category are thin. Example 3.26(2) of Adamek p. 33. Note that "thincciso2.u" is redundant thanks to elbasfv . (Contributed by Zhi Wang, 18-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | thincciso2.c | |- C = ( CatCat ` U ) |
|
| thincciso2.b | |- B = ( Base ` C ) |
||
| thincciso2.u | |- ( ph -> U e. V ) |
||
| thincciso2.x | |- ( ph -> X e. B ) |
||
| thincciso2.y | |- ( ph -> Y e. B ) |
||
| thincciso2.i | |- I = ( Iso ` C ) |
||
| thincciso2.f | |- ( ph -> F e. ( X I Y ) ) |
||
| thincciso2.yt | |- ( ph -> Y e. ThinCat ) |
||
| Assertion | thincciso2 | |- ( ph -> X e. ThinCat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thincciso2.c | |- C = ( CatCat ` U ) |
|
| 2 | thincciso2.b | |- B = ( Base ` C ) |
|
| 3 | thincciso2.u | |- ( ph -> U e. V ) |
|
| 4 | thincciso2.x | |- ( ph -> X e. B ) |
|
| 5 | thincciso2.y | |- ( ph -> Y e. B ) |
|
| 6 | thincciso2.i | |- I = ( Iso ` C ) |
|
| 7 | thincciso2.f | |- ( ph -> F e. ( X I Y ) ) |
|
| 8 | thincciso2.yt | |- ( ph -> Y e. ThinCat ) |
|
| 9 | eqidd | |- ( ph -> ( Base ` X ) = ( Base ` X ) ) |
|
| 10 | eqidd | |- ( ph -> ( Hom ` X ) = ( Hom ` X ) ) |
|
| 11 | relfull | |- Rel ( X Full Y ) |
|
| 12 | relin1 | |- ( Rel ( X Full Y ) -> Rel ( ( X Full Y ) i^i ( X Faith Y ) ) ) |
|
| 13 | 11 12 | ax-mp | |- Rel ( ( X Full Y ) i^i ( X Faith Y ) ) |
| 14 | eqid | |- ( Base ` X ) = ( Base ` X ) |
|
| 15 | eqid | |- ( Base ` Y ) = ( Base ` Y ) |
|
| 16 | 1 2 14 15 3 4 5 6 | catciso | |- ( ph -> ( F e. ( X I Y ) <-> ( F e. ( ( X Full Y ) i^i ( X Faith Y ) ) /\ ( 1st ` F ) : ( Base ` X ) -1-1-onto-> ( Base ` Y ) ) ) ) |
| 17 | 7 16 | mpbid | |- ( ph -> ( F e. ( ( X Full Y ) i^i ( X Faith Y ) ) /\ ( 1st ` F ) : ( Base ` X ) -1-1-onto-> ( Base ` Y ) ) ) |
| 18 | 17 | simpld | |- ( ph -> F e. ( ( X Full Y ) i^i ( X Faith Y ) ) ) |
| 19 | 1st2ndbr | |- ( ( Rel ( ( X Full Y ) i^i ( X Faith Y ) ) /\ F e. ( ( X Full Y ) i^i ( X Faith Y ) ) ) -> ( 1st ` F ) ( ( X Full Y ) i^i ( X Faith Y ) ) ( 2nd ` F ) ) |
|
| 20 | 13 18 19 | sylancr | |- ( ph -> ( 1st ` F ) ( ( X Full Y ) i^i ( X Faith Y ) ) ( 2nd ` F ) ) |
| 21 | eqid | |- ( Hom ` X ) = ( Hom ` X ) |
|
| 22 | eqid | |- ( Hom ` Y ) = ( Hom ` Y ) |
|
| 23 | 14 21 22 | isffth2 | |- ( ( 1st ` F ) ( ( X Full Y ) i^i ( X Faith Y ) ) ( 2nd ` F ) <-> ( ( 1st ` F ) ( X Func Y ) ( 2nd ` F ) /\ A. x e. ( Base ` X ) A. y e. ( Base ` X ) ( x ( 2nd ` F ) y ) : ( x ( Hom ` X ) y ) -1-1-onto-> ( ( ( 1st ` F ) ` x ) ( Hom ` Y ) ( ( 1st ` F ) ` y ) ) ) ) |
| 24 | 20 23 | sylib | |- ( ph -> ( ( 1st ` F ) ( X Func Y ) ( 2nd ` F ) /\ A. x e. ( Base ` X ) A. y e. ( Base ` X ) ( x ( 2nd ` F ) y ) : ( x ( Hom ` X ) y ) -1-1-onto-> ( ( ( 1st ` F ) ` x ) ( Hom ` Y ) ( ( 1st ` F ) ` y ) ) ) ) |
| 25 | 24 | simprd | |- ( ph -> A. x e. ( Base ` X ) A. y e. ( Base ` X ) ( x ( 2nd ` F ) y ) : ( x ( Hom ` X ) y ) -1-1-onto-> ( ( ( 1st ` F ) ` x ) ( Hom ` Y ) ( ( 1st ` F ) ` y ) ) ) |
| 26 | 25 | r19.21bi | |- ( ( ph /\ x e. ( Base ` X ) ) -> A. y e. ( Base ` X ) ( x ( 2nd ` F ) y ) : ( x ( Hom ` X ) y ) -1-1-onto-> ( ( ( 1st ` F ) ` x ) ( Hom ` Y ) ( ( 1st ` F ) ` y ) ) ) |
| 27 | 26 | r19.21bi | |- ( ( ( ph /\ x e. ( Base ` X ) ) /\ y e. ( Base ` X ) ) -> ( x ( 2nd ` F ) y ) : ( x ( Hom ` X ) y ) -1-1-onto-> ( ( ( 1st ` F ) ` x ) ( Hom ` Y ) ( ( 1st ` F ) ` y ) ) ) |
| 28 | 27 | anasss | |- ( ( ph /\ ( x e. ( Base ` X ) /\ y e. ( Base ` X ) ) ) -> ( x ( 2nd ` F ) y ) : ( x ( Hom ` X ) y ) -1-1-onto-> ( ( ( 1st ` F ) ` x ) ( Hom ` Y ) ( ( 1st ` F ) ` y ) ) ) |
| 29 | ovex | |- ( x ( Hom ` X ) y ) e. _V |
|
| 30 | 29 | f1oen | |- ( ( x ( 2nd ` F ) y ) : ( x ( Hom ` X ) y ) -1-1-onto-> ( ( ( 1st ` F ) ` x ) ( Hom ` Y ) ( ( 1st ` F ) ` y ) ) -> ( x ( Hom ` X ) y ) ~~ ( ( ( 1st ` F ) ` x ) ( Hom ` Y ) ( ( 1st ` F ) ` y ) ) ) |
| 31 | 28 30 | syl | |- ( ( ph /\ ( x e. ( Base ` X ) /\ y e. ( Base ` X ) ) ) -> ( x ( Hom ` X ) y ) ~~ ( ( ( 1st ` F ) ` x ) ( Hom ` Y ) ( ( 1st ` F ) ` y ) ) ) |
| 32 | 8 | adantr | |- ( ( ph /\ ( x e. ( Base ` X ) /\ y e. ( Base ` X ) ) ) -> Y e. ThinCat ) |
| 33 | 24 | simpld | |- ( ph -> ( 1st ` F ) ( X Func Y ) ( 2nd ` F ) ) |
| 34 | 14 15 33 | funcf1 | |- ( ph -> ( 1st ` F ) : ( Base ` X ) --> ( Base ` Y ) ) |
| 35 | 34 | ffvelcdmda | |- ( ( ph /\ x e. ( Base ` X ) ) -> ( ( 1st ` F ) ` x ) e. ( Base ` Y ) ) |
| 36 | 35 | adantrr | |- ( ( ph /\ ( x e. ( Base ` X ) /\ y e. ( Base ` X ) ) ) -> ( ( 1st ` F ) ` x ) e. ( Base ` Y ) ) |
| 37 | 34 | ffvelcdmda | |- ( ( ph /\ y e. ( Base ` X ) ) -> ( ( 1st ` F ) ` y ) e. ( Base ` Y ) ) |
| 38 | 37 | adantrl | |- ( ( ph /\ ( x e. ( Base ` X ) /\ y e. ( Base ` X ) ) ) -> ( ( 1st ` F ) ` y ) e. ( Base ` Y ) ) |
| 39 | 32 36 38 15 22 | thincmo | |- ( ( ph /\ ( x e. ( Base ` X ) /\ y e. ( Base ` X ) ) ) -> E* f f e. ( ( ( 1st ` F ) ` x ) ( Hom ` Y ) ( ( 1st ` F ) ` y ) ) ) |
| 40 | modom2 | |- ( E* f f e. ( ( ( 1st ` F ) ` x ) ( Hom ` Y ) ( ( 1st ` F ) ` y ) ) <-> ( ( ( 1st ` F ) ` x ) ( Hom ` Y ) ( ( 1st ` F ) ` y ) ) ~<_ 1o ) |
|
| 41 | 39 40 | sylib | |- ( ( ph /\ ( x e. ( Base ` X ) /\ y e. ( Base ` X ) ) ) -> ( ( ( 1st ` F ) ` x ) ( Hom ` Y ) ( ( 1st ` F ) ` y ) ) ~<_ 1o ) |
| 42 | endomtr | |- ( ( ( x ( Hom ` X ) y ) ~~ ( ( ( 1st ` F ) ` x ) ( Hom ` Y ) ( ( 1st ` F ) ` y ) ) /\ ( ( ( 1st ` F ) ` x ) ( Hom ` Y ) ( ( 1st ` F ) ` y ) ) ~<_ 1o ) -> ( x ( Hom ` X ) y ) ~<_ 1o ) |
|
| 43 | 31 41 42 | syl2anc | |- ( ( ph /\ ( x e. ( Base ` X ) /\ y e. ( Base ` X ) ) ) -> ( x ( Hom ` X ) y ) ~<_ 1o ) |
| 44 | modom2 | |- ( E* f f e. ( x ( Hom ` X ) y ) <-> ( x ( Hom ` X ) y ) ~<_ 1o ) |
|
| 45 | 43 44 | sylibr | |- ( ( ph /\ ( x e. ( Base ` X ) /\ y e. ( Base ` X ) ) ) -> E* f f e. ( x ( Hom ` X ) y ) ) |
| 46 | 33 | funcrcl2 | |- ( ph -> X e. Cat ) |
| 47 | 9 10 45 46 | isthincd | |- ( ph -> X e. ThinCat ) |