This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of two ordinal numbers is an ordinal number. (Contributed by NM, 7-Apr-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onin | |- ( ( A e. On /\ B e. On ) -> ( A i^i B ) e. On ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni | |- ( A e. On -> Ord A ) |
|
| 2 | eloni | |- ( B e. On -> Ord B ) |
|
| 3 | ordin | |- ( ( Ord A /\ Ord B ) -> Ord ( A i^i B ) ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( A e. On /\ B e. On ) -> Ord ( A i^i B ) ) |
| 5 | simpl | |- ( ( A e. On /\ B e. On ) -> A e. On ) |
|
| 6 | inex1g | |- ( A e. On -> ( A i^i B ) e. _V ) |
|
| 7 | elong | |- ( ( A i^i B ) e. _V -> ( ( A i^i B ) e. On <-> Ord ( A i^i B ) ) ) |
|
| 8 | 5 6 7 | 3syl | |- ( ( A e. On /\ B e. On ) -> ( ( A i^i B ) e. On <-> Ord ( A i^i B ) ) ) |
| 9 | 4 8 | mpbird | |- ( ( A e. On /\ B e. On ) -> ( A i^i B ) e. On ) |