This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A weak version of tfr2 which is useful for proofs that avoid the Axiom of Replacement. (Contributed by Mario Carneiro, 24-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tfr.1 | |- F = recs ( G ) |
|
| Assertion | tfr2a | |- ( A e. dom F -> ( F ` A ) = ( G ` ( F |` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfr.1 | |- F = recs ( G ) |
|
| 2 | eqid | |- { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( G ` ( f |` y ) ) ) } = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( G ` ( f |` y ) ) ) } |
|
| 3 | 2 | tfrlem9 | |- ( A e. dom recs ( G ) -> ( recs ( G ) ` A ) = ( G ` ( recs ( G ) |` A ) ) ) |
| 4 | 1 | dmeqi | |- dom F = dom recs ( G ) |
| 5 | 3 4 | eleq2s | |- ( A e. dom F -> ( recs ( G ) ` A ) = ( G ` ( recs ( G ) |` A ) ) ) |
| 6 | 1 | fveq1i | |- ( F ` A ) = ( recs ( G ) ` A ) |
| 7 | 1 | reseq1i | |- ( F |` A ) = ( recs ( G ) |` A ) |
| 8 | 7 | fveq2i | |- ( G ` ( F |` A ) ) = ( G ` ( recs ( G ) |` A ) ) |
| 9 | 5 6 8 | 3eqtr4g | |- ( A e. dom F -> ( F ` A ) = ( G ` ( F |` A ) ) ) |