This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two structures with the same base, hom-sets and composition operation are either both thin categories or neither. (Contributed by Zhi Wang, 16-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | thincpropd.1 | |- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
|
| thincpropd.2 | |- ( ph -> ( comf ` C ) = ( comf ` D ) ) |
||
| thincpropd.3 | |- ( ph -> C e. V ) |
||
| thincpropd.4 | |- ( ph -> D e. W ) |
||
| Assertion | thincpropd | |- ( ph -> ( C e. ThinCat <-> D e. ThinCat ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thincpropd.1 | |- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
|
| 2 | thincpropd.2 | |- ( ph -> ( comf ` C ) = ( comf ` D ) ) |
|
| 3 | thincpropd.3 | |- ( ph -> C e. V ) |
|
| 4 | thincpropd.4 | |- ( ph -> D e. W ) |
|
| 5 | 1 2 3 4 | catpropd | |- ( ph -> ( C e. Cat <-> D e. Cat ) ) |
| 6 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 7 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 8 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 9 | 1 | adantr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( Homf ` C ) = ( Homf ` D ) ) |
| 10 | simprl | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> x e. ( Base ` C ) ) |
|
| 11 | simprr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> y e. ( Base ` C ) ) |
|
| 12 | 6 7 8 9 10 11 | homfeqval | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( Hom ` C ) y ) = ( x ( Hom ` D ) y ) ) |
| 13 | 12 | eleq2d | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( f e. ( x ( Hom ` C ) y ) <-> f e. ( x ( Hom ` D ) y ) ) ) |
| 14 | 13 | mobidv | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( E* f f e. ( x ( Hom ` C ) y ) <-> E* f f e. ( x ( Hom ` D ) y ) ) ) |
| 15 | 14 | 2ralbidva | |- ( ph -> ( A. x e. ( Base ` C ) A. y e. ( Base ` C ) E* f f e. ( x ( Hom ` C ) y ) <-> A. x e. ( Base ` C ) A. y e. ( Base ` C ) E* f f e. ( x ( Hom ` D ) y ) ) ) |
| 16 | 1 | homfeqbas | |- ( ph -> ( Base ` C ) = ( Base ` D ) ) |
| 17 | 16 | raleqdv | |- ( ph -> ( A. y e. ( Base ` C ) E* f f e. ( x ( Hom ` D ) y ) <-> A. y e. ( Base ` D ) E* f f e. ( x ( Hom ` D ) y ) ) ) |
| 18 | 16 17 | raleqbidv | |- ( ph -> ( A. x e. ( Base ` C ) A. y e. ( Base ` C ) E* f f e. ( x ( Hom ` D ) y ) <-> A. x e. ( Base ` D ) A. y e. ( Base ` D ) E* f f e. ( x ( Hom ` D ) y ) ) ) |
| 19 | 15 18 | bitrd | |- ( ph -> ( A. x e. ( Base ` C ) A. y e. ( Base ` C ) E* f f e. ( x ( Hom ` C ) y ) <-> A. x e. ( Base ` D ) A. y e. ( Base ` D ) E* f f e. ( x ( Hom ` D ) y ) ) ) |
| 20 | 5 19 | anbi12d | |- ( ph -> ( ( C e. Cat /\ A. x e. ( Base ` C ) A. y e. ( Base ` C ) E* f f e. ( x ( Hom ` C ) y ) ) <-> ( D e. Cat /\ A. x e. ( Base ` D ) A. y e. ( Base ` D ) E* f f e. ( x ( Hom ` D ) y ) ) ) ) |
| 21 | 6 7 | isthinc | |- ( C e. ThinCat <-> ( C e. Cat /\ A. x e. ( Base ` C ) A. y e. ( Base ` C ) E* f f e. ( x ( Hom ` C ) y ) ) ) |
| 22 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 23 | 22 8 | isthinc | |- ( D e. ThinCat <-> ( D e. Cat /\ A. x e. ( Base ` D ) A. y e. ( Base ` D ) E* f f e. ( x ( Hom ` D ) y ) ) ) |
| 24 | 20 21 23 | 3bitr4g | |- ( ph -> ( C e. ThinCat <-> D e. ThinCat ) ) |