This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: All hom-sets of a terminal category are non-empty. (Contributed by Zhi Wang, 17-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | termcbas.c | |- ( ph -> C e. TermCat ) |
|
| termcbas.b | |- B = ( Base ` C ) |
||
| termcbasmo.x | |- ( ph -> X e. B ) |
||
| termcbasmo.y | |- ( ph -> Y e. B ) |
||
| termcid.h | |- H = ( Hom ` C ) |
||
| Assertion | termchomn0 | |- ( ph -> -. ( X H Y ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termcbas.c | |- ( ph -> C e. TermCat ) |
|
| 2 | termcbas.b | |- B = ( Base ` C ) |
|
| 3 | termcbasmo.x | |- ( ph -> X e. B ) |
|
| 4 | termcbasmo.y | |- ( ph -> Y e. B ) |
|
| 5 | termcid.h | |- H = ( Hom ` C ) |
|
| 6 | eqid | |- ( Id ` C ) = ( Id ` C ) |
|
| 7 | 1 | termccd | |- ( ph -> C e. Cat ) |
| 8 | 2 5 6 7 3 | catidcl | |- ( ph -> ( ( Id ` C ) ` X ) e. ( X H X ) ) |
| 9 | 1 2 3 4 | termcbasmo | |- ( ph -> X = Y ) |
| 10 | 9 | oveq2d | |- ( ph -> ( X H X ) = ( X H Y ) ) |
| 11 | 8 10 | eleqtrd | |- ( ph -> ( ( Id ` C ) ` X ) e. ( X H Y ) ) |
| 12 | n0i | |- ( ( ( Id ` C ) ` X ) e. ( X H Y ) -> -. ( X H Y ) = (/) ) |
|
| 13 | 11 12 | syl | |- ( ph -> -. ( X H Y ) = (/) ) |