This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The transitive closure function inherits the subset relation. (Contributed by Mario Carneiro, 23-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tc2.1 | |- A e. _V |
|
| Assertion | tcss | |- ( B C_ A -> ( TC ` B ) C_ ( TC ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tc2.1 | |- A e. _V |
|
| 2 | 1 | ssex | |- ( B C_ A -> B e. _V ) |
| 3 | tcvalg | |- ( B e. _V -> ( TC ` B ) = |^| { x | ( B C_ x /\ Tr x ) } ) |
|
| 4 | 2 3 | syl | |- ( B C_ A -> ( TC ` B ) = |^| { x | ( B C_ x /\ Tr x ) } ) |
| 5 | sstr2 | |- ( B C_ A -> ( A C_ x -> B C_ x ) ) |
|
| 6 | 5 | anim1d | |- ( B C_ A -> ( ( A C_ x /\ Tr x ) -> ( B C_ x /\ Tr x ) ) ) |
| 7 | 6 | ss2abdv | |- ( B C_ A -> { x | ( A C_ x /\ Tr x ) } C_ { x | ( B C_ x /\ Tr x ) } ) |
| 8 | intss | |- ( { x | ( A C_ x /\ Tr x ) } C_ { x | ( B C_ x /\ Tr x ) } -> |^| { x | ( B C_ x /\ Tr x ) } C_ |^| { x | ( A C_ x /\ Tr x ) } ) |
|
| 9 | 7 8 | syl | |- ( B C_ A -> |^| { x | ( B C_ x /\ Tr x ) } C_ |^| { x | ( A C_ x /\ Tr x ) } ) |
| 10 | tcvalg | |- ( A e. _V -> ( TC ` A ) = |^| { x | ( A C_ x /\ Tr x ) } ) |
|
| 11 | 1 10 | ax-mp | |- ( TC ` A ) = |^| { x | ( A C_ x /\ Tr x ) } |
| 12 | 9 11 | sseqtrrdi | |- ( B C_ A -> |^| { x | ( B C_ x /\ Tr x ) } C_ ( TC ` A ) ) |
| 13 | 4 12 | eqsstrd | |- ( B C_ A -> ( TC ` B ) C_ ( TC ` A ) ) |