This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The transitive closure function is idempotent. (Contributed by Mario Carneiro, 23-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tcidm | |- ( TC ` ( TC ` A ) ) = ( TC ` A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid | |- ( TC ` A ) C_ ( TC ` A ) |
|
| 2 | tctr | |- Tr ( TC ` A ) |
|
| 3 | fvex | |- ( TC ` A ) e. _V |
|
| 4 | tcmin | |- ( ( TC ` A ) e. _V -> ( ( ( TC ` A ) C_ ( TC ` A ) /\ Tr ( TC ` A ) ) -> ( TC ` ( TC ` A ) ) C_ ( TC ` A ) ) ) |
|
| 5 | 3 4 | ax-mp | |- ( ( ( TC ` A ) C_ ( TC ` A ) /\ Tr ( TC ` A ) ) -> ( TC ` ( TC ` A ) ) C_ ( TC ` A ) ) |
| 6 | 1 2 5 | mp2an | |- ( TC ` ( TC ` A ) ) C_ ( TC ` A ) |
| 7 | tcid | |- ( ( TC ` A ) e. _V -> ( TC ` A ) C_ ( TC ` ( TC ` A ) ) ) |
|
| 8 | 3 7 | ax-mp | |- ( TC ` A ) C_ ( TC ` ( TC ` A ) ) |
| 9 | 6 8 | eqssi | |- ( TC ` ( TC ` A ) ) = ( TC ` A ) |