This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a T_1 space, finite sets are closed. (Contributed by Mario Carneiro, 25-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ist0.1 | |- X = U. J |
|
| Assertion | t1ficld | |- ( ( J e. Fre /\ A C_ X /\ A e. Fin ) -> A e. ( Clsd ` J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ist0.1 | |- X = U. J |
|
| 2 | iunid | |- U_ x e. A { x } = A |
|
| 3 | 1 | ist1 | |- ( J e. Fre <-> ( J e. Top /\ A. x e. X { x } e. ( Clsd ` J ) ) ) |
| 4 | 3 | simplbi | |- ( J e. Fre -> J e. Top ) |
| 5 | 4 | 3ad2ant1 | |- ( ( J e. Fre /\ A C_ X /\ A e. Fin ) -> J e. Top ) |
| 6 | simp3 | |- ( ( J e. Fre /\ A C_ X /\ A e. Fin ) -> A e. Fin ) |
|
| 7 | 3 | simprbi | |- ( J e. Fre -> A. x e. X { x } e. ( Clsd ` J ) ) |
| 8 | ssralv | |- ( A C_ X -> ( A. x e. X { x } e. ( Clsd ` J ) -> A. x e. A { x } e. ( Clsd ` J ) ) ) |
|
| 9 | 7 8 | mpan9 | |- ( ( J e. Fre /\ A C_ X ) -> A. x e. A { x } e. ( Clsd ` J ) ) |
| 10 | 9 | 3adant3 | |- ( ( J e. Fre /\ A C_ X /\ A e. Fin ) -> A. x e. A { x } e. ( Clsd ` J ) ) |
| 11 | 1 | iuncld | |- ( ( J e. Top /\ A e. Fin /\ A. x e. A { x } e. ( Clsd ` J ) ) -> U_ x e. A { x } e. ( Clsd ` J ) ) |
| 12 | 5 6 10 11 | syl3anc | |- ( ( J e. Fre /\ A C_ X /\ A e. Fin ) -> U_ x e. A { x } e. ( Clsd ` J ) ) |
| 13 | 2 12 | eqeltrrid | |- ( ( J e. Fre /\ A C_ X /\ A e. Fin ) -> A e. ( Clsd ` J ) ) |