This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a T_1 space, finite sets are closed. (Contributed by Mario Carneiro, 25-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ist0.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | t1ficld | ⊢ ( ( 𝐽 ∈ Fre ∧ 𝐴 ⊆ 𝑋 ∧ 𝐴 ∈ Fin ) → 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ist0.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | iunid | ⊢ ∪ 𝑥 ∈ 𝐴 { 𝑥 } = 𝐴 | |
| 3 | 1 | ist1 | ⊢ ( 𝐽 ∈ Fre ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝑋 { 𝑥 } ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 4 | 3 | simplbi | ⊢ ( 𝐽 ∈ Fre → 𝐽 ∈ Top ) |
| 5 | 4 | 3ad2ant1 | ⊢ ( ( 𝐽 ∈ Fre ∧ 𝐴 ⊆ 𝑋 ∧ 𝐴 ∈ Fin ) → 𝐽 ∈ Top ) |
| 6 | simp3 | ⊢ ( ( 𝐽 ∈ Fre ∧ 𝐴 ⊆ 𝑋 ∧ 𝐴 ∈ Fin ) → 𝐴 ∈ Fin ) | |
| 7 | 3 | simprbi | ⊢ ( 𝐽 ∈ Fre → ∀ 𝑥 ∈ 𝑋 { 𝑥 } ∈ ( Clsd ‘ 𝐽 ) ) |
| 8 | ssralv | ⊢ ( 𝐴 ⊆ 𝑋 → ( ∀ 𝑥 ∈ 𝑋 { 𝑥 } ∈ ( Clsd ‘ 𝐽 ) → ∀ 𝑥 ∈ 𝐴 { 𝑥 } ∈ ( Clsd ‘ 𝐽 ) ) ) | |
| 9 | 7 8 | mpan9 | ⊢ ( ( 𝐽 ∈ Fre ∧ 𝐴 ⊆ 𝑋 ) → ∀ 𝑥 ∈ 𝐴 { 𝑥 } ∈ ( Clsd ‘ 𝐽 ) ) |
| 10 | 9 | 3adant3 | ⊢ ( ( 𝐽 ∈ Fre ∧ 𝐴 ⊆ 𝑋 ∧ 𝐴 ∈ Fin ) → ∀ 𝑥 ∈ 𝐴 { 𝑥 } ∈ ( Clsd ‘ 𝐽 ) ) |
| 11 | 1 | iuncld | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 { 𝑥 } ∈ ( Clsd ‘ 𝐽 ) ) → ∪ 𝑥 ∈ 𝐴 { 𝑥 } ∈ ( Clsd ‘ 𝐽 ) ) |
| 12 | 5 6 10 11 | syl3anc | ⊢ ( ( 𝐽 ∈ Fre ∧ 𝐴 ⊆ 𝑋 ∧ 𝐴 ∈ Fin ) → ∪ 𝑥 ∈ 𝐴 { 𝑥 } ∈ ( Clsd ‘ 𝐽 ) ) |
| 13 | 2 12 | eqeltrrid | ⊢ ( ( 𝐽 ∈ Fre ∧ 𝐴 ⊆ 𝑋 ∧ 𝐴 ∈ Fin ) → 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) |