This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a T_1 space". (Contributed by FL, 18-Jun-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ist0.1 | |- X = U. J |
|
| Assertion | ist1 | |- ( J e. Fre <-> ( J e. Top /\ A. a e. X { a } e. ( Clsd ` J ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ist0.1 | |- X = U. J |
|
| 2 | unieq | |- ( x = J -> U. x = U. J ) |
|
| 3 | 2 1 | eqtr4di | |- ( x = J -> U. x = X ) |
| 4 | fveq2 | |- ( x = J -> ( Clsd ` x ) = ( Clsd ` J ) ) |
|
| 5 | 4 | eleq2d | |- ( x = J -> ( { a } e. ( Clsd ` x ) <-> { a } e. ( Clsd ` J ) ) ) |
| 6 | 3 5 | raleqbidv | |- ( x = J -> ( A. a e. U. x { a } e. ( Clsd ` x ) <-> A. a e. X { a } e. ( Clsd ` J ) ) ) |
| 7 | df-t1 | |- Fre = { x e. Top | A. a e. U. x { a } e. ( Clsd ` x ) } |
|
| 8 | 6 7 | elrab2 | |- ( J e. Fre <-> ( J e. Top /\ A. a e. X { a } e. ( Clsd ` J ) ) ) |