This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A topological space is T_0 iff it is homeomorphic to its Kolmogorov quotient. (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | kqhmph | |- ( J e. Kol2 <-> J ~= ( KQ ` J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | t0top | |- ( J e. Kol2 -> J e. Top ) |
|
| 2 | toptopon2 | |- ( J e. Top <-> J e. ( TopOn ` U. J ) ) |
|
| 3 | 1 2 | sylib | |- ( J e. Kol2 -> J e. ( TopOn ` U. J ) ) |
| 4 | eqid | |- ( x e. U. J |-> { y e. J | x e. y } ) = ( x e. U. J |-> { y e. J | x e. y } ) |
|
| 5 | 4 | t0kq | |- ( J e. ( TopOn ` U. J ) -> ( J e. Kol2 <-> ( x e. U. J |-> { y e. J | x e. y } ) e. ( J Homeo ( KQ ` J ) ) ) ) |
| 6 | 3 5 | syl | |- ( J e. Kol2 -> ( J e. Kol2 <-> ( x e. U. J |-> { y e. J | x e. y } ) e. ( J Homeo ( KQ ` J ) ) ) ) |
| 7 | 6 | ibi | |- ( J e. Kol2 -> ( x e. U. J |-> { y e. J | x e. y } ) e. ( J Homeo ( KQ ` J ) ) ) |
| 8 | hmphi | |- ( ( x e. U. J |-> { y e. J | x e. y } ) e. ( J Homeo ( KQ ` J ) ) -> J ~= ( KQ ` J ) ) |
|
| 9 | 7 8 | syl | |- ( J e. Kol2 -> J ~= ( KQ ` J ) ) |
| 10 | hmphsym | |- ( J ~= ( KQ ` J ) -> ( KQ ` J ) ~= J ) |
|
| 11 | hmphtop1 | |- ( J ~= ( KQ ` J ) -> J e. Top ) |
|
| 12 | kqt0 | |- ( J e. Top <-> ( KQ ` J ) e. Kol2 ) |
|
| 13 | 11 12 | sylib | |- ( J ~= ( KQ ` J ) -> ( KQ ` J ) e. Kol2 ) |
| 14 | t0hmph | |- ( ( KQ ` J ) ~= J -> ( ( KQ ` J ) e. Kol2 -> J e. Kol2 ) ) |
|
| 15 | 10 13 14 | sylc | |- ( J ~= ( KQ ` J ) -> J e. Kol2 ) |
| 16 | 9 15 | impbii | |- ( J e. Kol2 <-> J ~= ( KQ ` J ) ) |