This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the symmetric group on set x . We represent the group as the set of one-to-one onto functions from x to itself under function composition, and topologize it as a function space assuming the set is discrete. This definition is based on the fact that a symmetric group is a restriction of the monoid of endofunctions. (Contributed by Paul Chapman, 25-Feb-2008) (Revised by AV, 28-Mar-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-symg | |- SymGrp = ( x e. _V |-> ( ( EndoFMnd ` x ) |`s { h | h : x -1-1-onto-> x } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | csymg | |- SymGrp |
|
| 1 | vx | |- x |
|
| 2 | cvv | |- _V |
|
| 3 | cefmnd | |- EndoFMnd |
|
| 4 | 1 | cv | |- x |
| 5 | 4 3 | cfv | |- ( EndoFMnd ` x ) |
| 6 | cress | |- |`s |
|
| 7 | vh | |- h |
|
| 8 | 7 | cv | |- h |
| 9 | 4 4 8 | wf1o | |- h : x -1-1-onto-> x |
| 10 | 9 7 | cab | |- { h | h : x -1-1-onto-> x } |
| 11 | 5 10 6 | co | |- ( ( EndoFMnd ` x ) |`s { h | h : x -1-1-onto-> x } ) |
| 12 | 1 2 11 | cmpt | |- ( x e. _V |-> ( ( EndoFMnd ` x ) |`s { h | h : x -1-1-onto-> x } ) ) |
| 13 | 0 12 | wceq | |- SymGrp = ( x e. _V |-> ( ( EndoFMnd ` x ) |`s { h | h : x -1-1-onto-> x } ) ) |