This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of the extension of a permutation, fixing the additional element, to the original domain. (Contributed by AV, 6-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgext.s | |- S = ( Base ` ( SymGrp ` ( N \ { K } ) ) ) |
|
| symgext.e | |- E = ( x e. N |-> if ( x = K , K , ( Z ` x ) ) ) |
||
| Assertion | symgextres | |- ( ( K e. N /\ Z e. S ) -> ( E |` ( N \ { K } ) ) = Z ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgext.s | |- S = ( Base ` ( SymGrp ` ( N \ { K } ) ) ) |
|
| 2 | symgext.e | |- E = ( x e. N |-> if ( x = K , K , ( Z ` x ) ) ) |
|
| 3 | 1 2 | symgextfv | |- ( ( K e. N /\ Z e. S ) -> ( i e. ( N \ { K } ) -> ( E ` i ) = ( Z ` i ) ) ) |
| 4 | 3 | ralrimiv | |- ( ( K e. N /\ Z e. S ) -> A. i e. ( N \ { K } ) ( E ` i ) = ( Z ` i ) ) |
| 5 | 1 2 | symgextf | |- ( ( K e. N /\ Z e. S ) -> E : N --> N ) |
| 6 | 5 | ffnd | |- ( ( K e. N /\ Z e. S ) -> E Fn N ) |
| 7 | eqid | |- ( SymGrp ` ( N \ { K } ) ) = ( SymGrp ` ( N \ { K } ) ) |
|
| 8 | 7 1 | symgbasf | |- ( Z e. S -> Z : ( N \ { K } ) --> ( N \ { K } ) ) |
| 9 | 8 | ffnd | |- ( Z e. S -> Z Fn ( N \ { K } ) ) |
| 10 | 9 | adantl | |- ( ( K e. N /\ Z e. S ) -> Z Fn ( N \ { K } ) ) |
| 11 | difssd | |- ( ( K e. N /\ Z e. S ) -> ( N \ { K } ) C_ N ) |
|
| 12 | fvreseq1 | |- ( ( ( E Fn N /\ Z Fn ( N \ { K } ) ) /\ ( N \ { K } ) C_ N ) -> ( ( E |` ( N \ { K } ) ) = Z <-> A. i e. ( N \ { K } ) ( E ` i ) = ( Z ` i ) ) ) |
|
| 13 | 6 10 11 12 | syl21anc | |- ( ( K e. N /\ Z e. S ) -> ( ( E |` ( N \ { K } ) ) = Z <-> A. i e. ( N \ { K } ) ( E ` i ) = ( Z ` i ) ) ) |
| 14 | 4 13 | mpbird | |- ( ( K e. N /\ Z e. S ) -> ( E |` ( N \ { K } ) ) = Z ) |