This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function value of the extension of a permutation, fixing the additional element, for elements in the original domain. (Contributed by AV, 6-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgext.s | |- S = ( Base ` ( SymGrp ` ( N \ { K } ) ) ) |
|
| symgext.e | |- E = ( x e. N |-> if ( x = K , K , ( Z ` x ) ) ) |
||
| Assertion | symgextfv | |- ( ( K e. N /\ Z e. S ) -> ( X e. ( N \ { K } ) -> ( E ` X ) = ( Z ` X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgext.s | |- S = ( Base ` ( SymGrp ` ( N \ { K } ) ) ) |
|
| 2 | symgext.e | |- E = ( x e. N |-> if ( x = K , K , ( Z ` x ) ) ) |
|
| 3 | eldifi | |- ( X e. ( N \ { K } ) -> X e. N ) |
|
| 4 | fvexd | |- ( ( K e. N /\ Z e. S ) -> ( Z ` X ) e. _V ) |
|
| 5 | ifexg | |- ( ( K e. N /\ ( Z ` X ) e. _V ) -> if ( X = K , K , ( Z ` X ) ) e. _V ) |
|
| 6 | 4 5 | syldan | |- ( ( K e. N /\ Z e. S ) -> if ( X = K , K , ( Z ` X ) ) e. _V ) |
| 7 | eqeq1 | |- ( x = X -> ( x = K <-> X = K ) ) |
|
| 8 | fveq2 | |- ( x = X -> ( Z ` x ) = ( Z ` X ) ) |
|
| 9 | 7 8 | ifbieq2d | |- ( x = X -> if ( x = K , K , ( Z ` x ) ) = if ( X = K , K , ( Z ` X ) ) ) |
| 10 | 9 2 | fvmptg | |- ( ( X e. N /\ if ( X = K , K , ( Z ` X ) ) e. _V ) -> ( E ` X ) = if ( X = K , K , ( Z ` X ) ) ) |
| 11 | 3 6 10 | syl2anr | |- ( ( ( K e. N /\ Z e. S ) /\ X e. ( N \ { K } ) ) -> ( E ` X ) = if ( X = K , K , ( Z ` X ) ) ) |
| 12 | eldifsnneq | |- ( X e. ( N \ { K } ) -> -. X = K ) |
|
| 13 | 12 | adantl | |- ( ( ( K e. N /\ Z e. S ) /\ X e. ( N \ { K } ) ) -> -. X = K ) |
| 14 | 13 | iffalsed | |- ( ( ( K e. N /\ Z e. S ) /\ X e. ( N \ { K } ) ) -> if ( X = K , K , ( Z ` X ) ) = ( Z ` X ) ) |
| 15 | 11 14 | eqtrd | |- ( ( ( K e. N /\ Z e. S ) /\ X e. ( N \ { K } ) ) -> ( E ` X ) = ( Z ` X ) ) |
| 16 | 15 | ex | |- ( ( K e. N /\ Z e. S ) -> ( X e. ( N \ { K } ) -> ( E ` X ) = ( Z ` X ) ) ) |