This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The extension of a permutation, fixing the additional element, is a function. (Contributed by AV, 6-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgext.s | |- S = ( Base ` ( SymGrp ` ( N \ { K } ) ) ) |
|
| symgext.e | |- E = ( x e. N |-> if ( x = K , K , ( Z ` x ) ) ) |
||
| Assertion | symgextf | |- ( ( K e. N /\ Z e. S ) -> E : N --> N ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgext.s | |- S = ( Base ` ( SymGrp ` ( N \ { K } ) ) ) |
|
| 2 | symgext.e | |- E = ( x e. N |-> if ( x = K , K , ( Z ` x ) ) ) |
|
| 3 | simplll | |- ( ( ( ( K e. N /\ Z e. S ) /\ x e. N ) /\ x = K ) -> K e. N ) |
|
| 4 | simpllr | |- ( ( ( ( K e. N /\ Z e. S ) /\ x e. N ) /\ -. x = K ) -> Z e. S ) |
|
| 5 | simpr | |- ( ( ( K e. N /\ Z e. S ) /\ x e. N ) -> x e. N ) |
|
| 6 | neqne | |- ( -. x = K -> x =/= K ) |
|
| 7 | 5 6 | anim12i | |- ( ( ( ( K e. N /\ Z e. S ) /\ x e. N ) /\ -. x = K ) -> ( x e. N /\ x =/= K ) ) |
| 8 | eldifsn | |- ( x e. ( N \ { K } ) <-> ( x e. N /\ x =/= K ) ) |
|
| 9 | 7 8 | sylibr | |- ( ( ( ( K e. N /\ Z e. S ) /\ x e. N ) /\ -. x = K ) -> x e. ( N \ { K } ) ) |
| 10 | eqid | |- ( SymGrp ` ( N \ { K } ) ) = ( SymGrp ` ( N \ { K } ) ) |
|
| 11 | 10 1 | symgfv | |- ( ( Z e. S /\ x e. ( N \ { K } ) ) -> ( Z ` x ) e. ( N \ { K } ) ) |
| 12 | 4 9 11 | syl2anc | |- ( ( ( ( K e. N /\ Z e. S ) /\ x e. N ) /\ -. x = K ) -> ( Z ` x ) e. ( N \ { K } ) ) |
| 13 | 12 | eldifad | |- ( ( ( ( K e. N /\ Z e. S ) /\ x e. N ) /\ -. x = K ) -> ( Z ` x ) e. N ) |
| 14 | 3 13 | ifclda | |- ( ( ( K e. N /\ Z e. S ) /\ x e. N ) -> if ( x = K , K , ( Z ` x ) ) e. N ) |
| 15 | 14 2 | fmptd | |- ( ( K e. N /\ Z e. S ) -> E : N --> N ) |