This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum of a nonempty set of reals is real iff it is not plus infinity. (Contributed by NM, 5-Feb-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | supxrre2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supxrre1 | ||
| 2 | ressxr | ||
| 3 | sstr | ||
| 4 | 2 3 | mpan2 | |
| 5 | supxrcl | ||
| 6 | nltpnft | ||
| 7 | 4 5 6 | 3syl | |
| 8 | 7 | necon2abid | |
| 9 | 8 | adantr | |
| 10 | 1 9 | bitrd |