This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An upper bound is not less than the supremum of a nonempty bounded set of reals. (Contributed by NM, 15-Nov-2004) (Revised by Mario Carneiro, 6-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | suprnub | |- ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) /\ B e. RR ) -> ( -. B < sup ( A , RR , < ) <-> A. z e. A -. B < z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suprlub | |- ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) /\ B e. RR ) -> ( B < sup ( A , RR , < ) <-> E. z e. A B < z ) ) |
|
| 2 | 1 | notbid | |- ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) /\ B e. RR ) -> ( -. B < sup ( A , RR , < ) <-> -. E. z e. A B < z ) ) |
| 3 | ralnex | |- ( A. z e. A -. B < z <-> -. E. z e. A B < z ) |
|
| 4 | 2 3 | bitr4di | |- ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) /\ B e. RR ) -> ( -. B < sup ( A , RR , < ) <-> A. z e. A -. B < z ) ) |