This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the operation constructing the support of a function with a given domain. This version of suppvalfn assumes F is a set rather than its domain X , avoiding ax-rep . (Contributed by SN, 5-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | suppvalfng | |- ( ( F Fn X /\ F e. V /\ Z e. W ) -> ( F supp Z ) = { i e. X | ( F ` i ) =/= Z } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfun | |- ( F Fn X -> Fun F ) |
|
| 2 | suppval1 | |- ( ( Fun F /\ F e. V /\ Z e. W ) -> ( F supp Z ) = { i e. dom F | ( F ` i ) =/= Z } ) |
|
| 3 | 1 2 | syl3an1 | |- ( ( F Fn X /\ F e. V /\ Z e. W ) -> ( F supp Z ) = { i e. dom F | ( F ` i ) =/= Z } ) |
| 4 | fndm | |- ( F Fn X -> dom F = X ) |
|
| 5 | 4 | 3ad2ant1 | |- ( ( F Fn X /\ F e. V /\ Z e. W ) -> dom F = X ) |
| 6 | 5 | rabeqdv | |- ( ( F Fn X /\ F e. V /\ Z e. W ) -> { i e. dom F | ( F ` i ) =/= Z } = { i e. X | ( F ` i ) =/= Z } ) |
| 7 | 3 6 | eqtrd | |- ( ( F Fn X /\ F e. V /\ Z e. W ) -> ( F supp Z ) = { i e. X | ( F ` i ) =/= Z } ) |