This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element of the support of a function with a given domain. This version of elsuppfn assumes F is a set rather than its domain X , avoiding ax-rep . (Contributed by SN, 5-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elsuppfng | |- ( ( F Fn X /\ F e. V /\ Z e. W ) -> ( S e. ( F supp Z ) <-> ( S e. X /\ ( F ` S ) =/= Z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppvalfng | |- ( ( F Fn X /\ F e. V /\ Z e. W ) -> ( F supp Z ) = { i e. X | ( F ` i ) =/= Z } ) |
|
| 2 | 1 | eleq2d | |- ( ( F Fn X /\ F e. V /\ Z e. W ) -> ( S e. ( F supp Z ) <-> S e. { i e. X | ( F ` i ) =/= Z } ) ) |
| 3 | fveq2 | |- ( i = S -> ( F ` i ) = ( F ` S ) ) |
|
| 4 | 3 | neeq1d | |- ( i = S -> ( ( F ` i ) =/= Z <-> ( F ` S ) =/= Z ) ) |
| 5 | 4 | elrab | |- ( S e. { i e. X | ( F ` i ) =/= Z } <-> ( S e. X /\ ( F ` S ) =/= Z ) ) |
| 6 | 2 5 | bitrdi | |- ( ( F Fn X /\ F e. V /\ Z e. W ) -> ( S e. ( F supp Z ) <-> ( S e. X /\ ( F ` S ) =/= Z ) ) ) |