This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The support of a function in maps-to notation with a class difference. (Contributed by AV, 28-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mptsuppdifd.f | |- F = ( x e. A |-> B ) |
|
| mptsuppdifd.a | |- ( ph -> A e. V ) |
||
| mptsuppdifd.z | |- ( ph -> Z e. W ) |
||
| Assertion | mptsuppdifd | |- ( ph -> ( F supp Z ) = { x e. A | B e. ( _V \ { Z } ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptsuppdifd.f | |- F = ( x e. A |-> B ) |
|
| 2 | mptsuppdifd.a | |- ( ph -> A e. V ) |
|
| 3 | mptsuppdifd.z | |- ( ph -> Z e. W ) |
|
| 4 | 2 | mptexd | |- ( ph -> ( x e. A |-> B ) e. _V ) |
| 5 | 1 4 | eqeltrid | |- ( ph -> F e. _V ) |
| 6 | suppimacnv | |- ( ( F e. _V /\ Z e. W ) -> ( F supp Z ) = ( `' F " ( _V \ { Z } ) ) ) |
|
| 7 | 5 3 6 | syl2anc | |- ( ph -> ( F supp Z ) = ( `' F " ( _V \ { Z } ) ) ) |
| 8 | 1 | mptpreima | |- ( `' F " ( _V \ { Z } ) ) = { x e. A | B e. ( _V \ { Z } ) } |
| 9 | 7 8 | eqtrdi | |- ( ph -> ( F supp Z ) = { x e. A | B e. ( _V \ { Z } ) } ) |