This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The support of functions "defined" by inverse images is a subset of the support defined by df-supp . (Contributed by AV, 7-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | suppimacnvss | |- ( ( R e. V /\ Z e. W ) -> ( `' R " ( _V \ { Z } ) ) C_ ( R supp Z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exsimpl | |- ( E. y ( x R y /\ y =/= Z ) -> E. y x R y ) |
|
| 2 | pm5.1 | |- ( ( x R y /\ y =/= Z ) -> ( x R y <-> y =/= Z ) ) |
|
| 3 | 2 | eximi | |- ( E. y ( x R y /\ y =/= Z ) -> E. y ( x R y <-> y =/= Z ) ) |
| 4 | 1 3 | jca | |- ( E. y ( x R y /\ y =/= Z ) -> ( E. y x R y /\ E. y ( x R y <-> y =/= Z ) ) ) |
| 5 | 4 | a1i | |- ( ( R e. V /\ Z e. W ) -> ( E. y ( x R y /\ y =/= Z ) -> ( E. y x R y /\ E. y ( x R y <-> y =/= Z ) ) ) ) |
| 6 | 5 | ss2abdv | |- ( ( R e. V /\ Z e. W ) -> { x | E. y ( x R y /\ y =/= Z ) } C_ { x | ( E. y x R y /\ E. y ( x R y <-> y =/= Z ) ) } ) |
| 7 | cnvimadfsn | |- ( `' R " ( _V \ { Z } ) ) = { x | E. y ( x R y /\ y =/= Z ) } |
|
| 8 | 7 | a1i | |- ( ( R e. V /\ Z e. W ) -> ( `' R " ( _V \ { Z } ) ) = { x | E. y ( x R y /\ y =/= Z ) } ) |
| 9 | suppvalbr | |- ( ( R e. V /\ Z e. W ) -> ( R supp Z ) = { x | ( E. y x R y /\ E. y ( x R y <-> y =/= Z ) ) } ) |
|
| 10 | 6 8 9 | 3sstr4d | |- ( ( R e. V /\ Z e. W ) -> ( `' R " ( _V \ { Z } ) ) C_ ( R supp Z ) ) |