This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The support of functions "defined" by inverse images expressed by binary relations. (Contributed by AV, 7-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvimadfsn | |- ( `' R " ( _V \ { Z } ) ) = { x | E. y ( x R y /\ y =/= Z ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfima3 | |- ( `' R " ( _V \ { Z } ) ) = { x | E. y ( y e. ( _V \ { Z } ) /\ <. y , x >. e. `' R ) } |
|
| 2 | eldifvsn | |- ( y e. _V -> ( y e. ( _V \ { Z } ) <-> y =/= Z ) ) |
|
| 3 | 2 | elv | |- ( y e. ( _V \ { Z } ) <-> y =/= Z ) |
| 4 | vex | |- y e. _V |
|
| 5 | vex | |- x e. _V |
|
| 6 | 4 5 | opelcnv | |- ( <. y , x >. e. `' R <-> <. x , y >. e. R ) |
| 7 | df-br | |- ( x R y <-> <. x , y >. e. R ) |
|
| 8 | 6 7 | bitr4i | |- ( <. y , x >. e. `' R <-> x R y ) |
| 9 | 3 8 | anbi12ci | |- ( ( y e. ( _V \ { Z } ) /\ <. y , x >. e. `' R ) <-> ( x R y /\ y =/= Z ) ) |
| 10 | 9 | exbii | |- ( E. y ( y e. ( _V \ { Z } ) /\ <. y , x >. e. `' R ) <-> E. y ( x R y /\ y =/= Z ) ) |
| 11 | 10 | abbii | |- { x | E. y ( y e. ( _V \ { Z } ) /\ <. y , x >. e. `' R ) } = { x | E. y ( x R y /\ y =/= Z ) } |
| 12 | 1 11 | eqtri | |- ( `' R " ( _V \ { Z } ) ) = { x | E. y ( x R y /\ y =/= Z ) } |