This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The support of functions "defined" by inverse images is a subset of the support defined by df-supp . (Contributed by AV, 7-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | suppimacnvss | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( ◡ 𝑅 “ ( V ∖ { 𝑍 } ) ) ⊆ ( 𝑅 supp 𝑍 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exsimpl | ⊢ ( ∃ 𝑦 ( 𝑥 𝑅 𝑦 ∧ 𝑦 ≠ 𝑍 ) → ∃ 𝑦 𝑥 𝑅 𝑦 ) | |
| 2 | pm5.1 | ⊢ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 ≠ 𝑍 ) → ( 𝑥 𝑅 𝑦 ↔ 𝑦 ≠ 𝑍 ) ) | |
| 3 | 2 | eximi | ⊢ ( ∃ 𝑦 ( 𝑥 𝑅 𝑦 ∧ 𝑦 ≠ 𝑍 ) → ∃ 𝑦 ( 𝑥 𝑅 𝑦 ↔ 𝑦 ≠ 𝑍 ) ) |
| 4 | 1 3 | jca | ⊢ ( ∃ 𝑦 ( 𝑥 𝑅 𝑦 ∧ 𝑦 ≠ 𝑍 ) → ( ∃ 𝑦 𝑥 𝑅 𝑦 ∧ ∃ 𝑦 ( 𝑥 𝑅 𝑦 ↔ 𝑦 ≠ 𝑍 ) ) ) |
| 5 | 4 | a1i | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( ∃ 𝑦 ( 𝑥 𝑅 𝑦 ∧ 𝑦 ≠ 𝑍 ) → ( ∃ 𝑦 𝑥 𝑅 𝑦 ∧ ∃ 𝑦 ( 𝑥 𝑅 𝑦 ↔ 𝑦 ≠ 𝑍 ) ) ) ) |
| 6 | 5 | ss2abdv | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → { 𝑥 ∣ ∃ 𝑦 ( 𝑥 𝑅 𝑦 ∧ 𝑦 ≠ 𝑍 ) } ⊆ { 𝑥 ∣ ( ∃ 𝑦 𝑥 𝑅 𝑦 ∧ ∃ 𝑦 ( 𝑥 𝑅 𝑦 ↔ 𝑦 ≠ 𝑍 ) ) } ) |
| 7 | cnvimadfsn | ⊢ ( ◡ 𝑅 “ ( V ∖ { 𝑍 } ) ) = { 𝑥 ∣ ∃ 𝑦 ( 𝑥 𝑅 𝑦 ∧ 𝑦 ≠ 𝑍 ) } | |
| 8 | 7 | a1i | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( ◡ 𝑅 “ ( V ∖ { 𝑍 } ) ) = { 𝑥 ∣ ∃ 𝑦 ( 𝑥 𝑅 𝑦 ∧ 𝑦 ≠ 𝑍 ) } ) |
| 9 | suppvalbr | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝑅 supp 𝑍 ) = { 𝑥 ∣ ( ∃ 𝑦 𝑥 𝑅 𝑦 ∧ ∃ 𝑦 ( 𝑥 𝑅 𝑦 ↔ 𝑦 ≠ 𝑍 ) ) } ) | |
| 10 | 6 8 9 | 3sstr4d | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( ◡ 𝑅 “ ( V ∖ { 𝑍 } ) ) ⊆ ( 𝑅 supp 𝑍 ) ) |